№2, 2025

PROSPECTS OF ARTIFICIAL SOFTWARE ENGINEERING

Zafar Jafarov, Atif Namazov, Javid Abbasli, Khalid Nazarov, Sevinj Aliyeva

The merging of AI and software engineering marks a defining moment: intelligent systems now move beyond simple code completion or test automation to become active partners in each phase of development. We term this “Artificial Software Engineering,” a collaborative framework where human ingenuity and machine intelligence co–author software—from early prototypes and code generation to debugging and architectural design (Menzies et al., 2019). By looking at platforms like Devin AI and GitHub Copilot, we see clear benefits—faster iterations, deeper error detection—but also face new challenges around trust, ownership, legal responsibility, and maintaining AI‐influenced code over time. Rather than treating automation as an end goal, we argue that this emerging discipline demands fresh thinking about ethics, team dynamics, and design practices. Ultimately, the most successful software will blend human insight with algorithmic strength to drive responsible innovation (pp.69-74).

Keywords: Artificial software engineering, Software development automation, Github copilot, Human–AI collaboration, AI ethics in programming.
References
  • Ahmed, I., Aleti, A., Cai, H., Chatzigeorgiou, A., He, P., Hu, X., Pezzè, M., Poshyvanyk, D., & Xia, X. (2025). Artificial Intelligence for Software Engineering: The Journey so far and the Road ahead. ACM Transactions on Software Engineering and Methodology, 34(5), 1-27. https://doi.org/10.1145/3719006
  • Allamanis, M., Brockschmidt, M., & Khademi, M. (2018). Learning to represent programs with graphs. In International Conference on Learning Representations (ICLR) (pp. 1-17). https://doi.org/10.48550/arXiv.1711.00740
  • Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2014). Power to the People: The role of humans in interactive machine learning. AI Magazine, 35(4), 105-120. https://doi.org/10.1609/aimag.v35i4.2513
  • Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., et al. (2021). Evaluating large language models trained on code. ArXiv. https://doi.org/10.48550/arXiv.2107.03374
  • Harman, M., & Jones, B. F. (2001). Search-based software engineering. Information and Software Technology, 43(14), 833–839. https://doi.org/10.1016/S0950-5849(01)00189-6
  • Islam, M., Khan, F., Alam, S., & Hasan, M. (2023). Artificial intelligence in software testing: A systematic review. In Proceedings of the IEEE Region 10 Conference (TENCON) (pp. 524–529). IEEE.https://doi.org/10.1109/TENCON58879.2023.10322349
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A., Ballard, A. J., Cowie, A., Nikolov, S., Jain, R., Adler, J., Back, T., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
  • Kogan, M., & Palen, L. (2018). Conversations in the eye of the storm: At-scale features of conversational structure in a high-tempo, high-stakes microblogging environment. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1-13). https://doi.org/10.1145/3173574.3173658
  • Polu, O. R. (2025). AI-Driven Automatic Code Refactoring for Performance Optimization. International Journal of Science and Research, 14(1), 1316-1320. https://doi.org/10.21275/SR25011114610
  • Pradel, M., & Sen, K. (2018). Deepbugs: A learning approach to name-based bug detection. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 1-25. https://doi.org/10.1145/3276517
  • Pujiharto, E. W., Tikasni, E., Lewu, R., Sudirman, S., & Utami, E. (2024). Systematic literature review on software requirement engineering in 5.0 Industry: Current practices and future challenges. International Journal of Advanced Science Computing and Engineering, 6(3), 104–108. https://doi.org/10.62527/ijasce.6.3.152
  • Shimmi, S., Okhravi, H., & Rahimi, M. (2025). AI-based software vulnerability detection: A systematic literature review. https://doi.org/10.48550/arXiv.2506.10280
  • Wang, S., Huang, L., Gao, A., Ge, J., Zhang, T., Feng, H., Satyarth, I., Chen, C., Liu, Z., & Wang, Q. (2023). Machine/deep learning for software engineering: A systematic literature review. IEEE Transactions on Software Engineering, 49(3), 1188–1231. https://doi.org/10.1109/TSE.2022.3173346
  • Yang, Y., Xia, X., Lo, D., & Grundy, J. (2022). A survey on deep learning for software engineering. ACM Computing Surveys (CSUR), 54(10s), 1-73. https://doi.org/10.1145/3505243