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 A B S T R A C T 

The merging of AI and software engineering marks a defining moment: intelligent 

systems now move beyond simple code completion or test automation to become 

active partners in each phase of development. We term this “Artificial Software 

Engineering,” a collaborative framework where human ingenuity and machine 

intelligence co–author software—from early prototypes and code generation to 

debugging and architectural design (Menzies et al., 2019). By looking at platforms like 

Devin AI and GitHub Copilot, we see clear benefits—faster iterations, deeper error 

detection—but also face new challenges around trust, ownership, legal responsibility, 

and maintaining AI‐influenced code over time. Rather than treating automation as an 

end goal, we argue that this emerging discipline demands fresh thinking about ethics, 

team dynamics, and design practices. Ultimately, the most successful software will 

blend human insight with algorithmic strength to drive responsible innovation. 

 

1. Introduction 

Software engineering is in the midst of a 

dramatic shift. What was once a craft performed 

entirely by human hands—writing code step by 

step, designing architectures on paper, and 

running countless tests—now involves another 

player: artificial intelligence. In the past few years, 

AI has moved beyond simple helpers (like code 

completion or automated tests) to join developers 

as a genuine partner in creating software (Ahmed 

et al., 2025). Today’s tools range from smart 

suggestion engines that predict your next line of 

code to autonomous agents that can spin up a 

working prototype and even deploy it. As these 

abilities improve, the line between “what 

engineers do” and “what AI does” grows ever 

thinner. We call this emerging way of working 

“Artificial Software Engineering”—an approach 

where intelligent systems weave into every phase 

of development, from early planning to final 

rollout (Menzies, Williams, & Zimmermann, 

2019). Yet, despite all the buzz, there’s 

surprisingly little careful study of this shift. 

Conversations often swing between overhyped 

sales pitches and narrowly focused performance 

reports, without tackling the bigger picture. How 

does AI really fit into a team? What new risks 

does it introduce? And how do developers change 

their daily routines when a machine shares their 

workspace? This paper aims to fill that gap. We 

look at real usage of tools like GitHub Copilot and 

Devin AI to see where they shine and where they 

stumble. We propose a simple framework for how 

AI joins each stage of the development cycle—

ideation, coding, testing, deployment—and 

highlight the sticky questions of ownership, 

responsibility, teamwork, and maintenance that 
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come along for the ride (Amershi et al., 2019). In 

the end, we believe software’s future won’t be a 

contest of humans versus machines, but a 

collaboration between the two. To make that 

partnership work, we need fresh mindsets, new 

processes, and software designs built for a world 

where people and algorithms build side by side. 

2. Background and Related Work 

The use of AI in software development isn’t 

brand-new, but its pace and scale have surged 

lately. In the 1980s and ’90s, we experimented 

with expert-system shells and rule-based engines 

to tackle small chores—code linting, simple static 

checks, or generating basic test cases(Islam M et 

al.,2023). Those early tools, however, buckled 

under the weight of growing codebases: their 

rigid rules and fixed knowledge quickly fell out of 

step with real-world complexity (Menzies, 

Williams, & Zimmermann, 2019). 

When machine learning and neural networks 

entered the scene, everything shifted. Models 

trained on vast code repositories began to spot 

non-obvious patterns, surface hidden bugs, and 

even guess what a developer might type next. 

Natural language processing added another layer, 

allowing these assistants to interpret comments, 

draft documentation snippets, and “talk” with 

engineers in everyday language. 

The real game-changer arrived with large 

language models spun into coding environments. 

GitHub Copilot—built on OpenAI’s Codex—can 

instantly turn a plain-English prompt into 

working code, shortening the path from idea to 

implementation (Kogan & Palen, 2018). Other 

contenders, like DeepMind’s AlphaCode and 

Devin AI, are pushing further—tackling end-to-

end tasks, from sketching out an algorithm to 

running automated tests on the finished product. 

Scholars have been quick to document these 

advances: graph-based networks for code 

reasoning (Allamanis et al., 2018), deep-learning 

bug detectors outpacing classic static analyzers 

(Pradel & Sen, 2018), and ML-driven refactoring 

techniques that clean up messy code. Surveys by 

Liu et al. (2020) and Yang et al. (2022) map AI’s 

expanding footprint in test automation, defect 

prediction, and code synthesis. 

Yet most of this work either zeroes in on 

narrow tool benchmarks or floats lofty predictions 

without tying them to day-to-day developer 

experiences. We still lack a grounded, lifecycle-

wide look at how AI reshapes every step of 

software creation—from gathering requirements 

and drafting prototypes through to deployment 

and maintenance (Ahmed et al., 2025). Questions 

around trusting AI suggestions, preserving code 

quality, and defining who “owns” machine-

generated code often get relegated to the sidelines 

(Amershi et al., 2019). And the rise of hybrid 

teams—where humans and AI agents coauthor 

software—raises thorny issues about 

responsibility and collaboration that few have 

tackled head-on (Harman, M., & Jones, B. F. 2001). 

This paper tackles these gaps. By combining 

real-world case studies of leading AI tools with a 

fresh framework for understanding their 

integration, we argue that “Artificial Software 

Engineering” isn’t a distant dream—it’s 

happening now. Making it work demands 

human-centered approaches, new collaboration 

models, and software designs built for a world 

where people and intelligent systems build side 

by side (Amershi et al., 2019; Ahmed et al., 2025). 

3. Real-World Tool Analysis & Case 

Studies 

The arrival of AI-driven development 

assistants has reshaped the software engineering 

process, moving it away from purely manual, 

rule-based routines toward environments where 

humans and algorithms work side by side. To see 

how this plays out in practice, we’ll look at several 

prominent tools—grouped by their main roles: 

creating code, finding and fixing errors, 

producing documentation, and even taking on 

entire projects autonomously. 

3.1. GitHub Copilot: Beyond Autocomplete 

GitHub Copilot, powered by OpenAI’s Codex, 

is now a fixture inside editors like VS Code and 

JetBrains IDEs. It does more than finish your 

current line—it can draft whole functions or 

propose boilerplate you didn’t write yourself. 

Because it leans heavily on patterns common 

across public repositories, many developers find 

themselves writing in those same familiar styles—

even when a different approach might fit better. In 

a 2022 survey, 88 percent of users said Copilot 

boosted their productivity, yet over 40 percent 

confessed to accepting suggestions without fully 

grasping them (Kogan & Palen, 2018). That trade-

off—speed versus understanding—raises real 

questions about code quality and long-term 
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maintainability (Menzies, Williams, & 

Zimmermann, 2019). 

3.2. Devin AI: A Self-Sufficient Engineer 

Released by Cognition Labs in 2024, Devin AI 

aims to be more than a helper—it claims to be the 

first “AI software engineer.” Rather than waiting 

for prompts in your IDE, Devin lives in its own 

mini operating environment, complete with a 

command line, browser, and editor. In demos, it 

has built simple websites, wired up video-

processing pipelines, and even closed bug tickets 

found on GitHub—all without a human typing a 

single line. But because access is still limited, we 

don’t yet know how Devin handles massive 

corporate codebases, ever-changing requirements, 

or the thorny issues of who legally owns its 

output (Ahmed et al., 2025) 

3.3. Codium AI, Tabnine, and 

CodeWhisperer: Niche Specialists 

Not every AI assistant aims to do everything. 

Codium AI zeroes in on test code—generating 

thoughtful unit tests and explaining coverage 

gaps, then slotting itself into existing CI/CD 

workflows.  

Tabnine focuses on on-premises privacy, letting 

enterprises run completions against local models so 

proprietary code never leaves their servers. 

Amazon CodeWhisperer ties deeply into AWS 

services, weaving in security scans and compliance 

checks as part of its suggestion engine. These tools 

show a shift toward lightweight, task-focused agents 

that can be composed together inside larger 

development ecosystems (Menzies, Williams, & 

Zimmermann, 2019). 

3.4 Real-World Friction 

When teams actually deploy these assistants, 

familiar challenges emerge: 

● Skill atrophy in junior developers who lean 

too heavily on AI hints (Amershi et al., 

2019). 

● Context gaps when suggestions ignore an 

application’s architecture or legacy quirks 

(Allamanis et al., 2018). 

● Hidden vulnerabilities introduced by 

generated snippets that no one fully audits 

(Shimmi et al., 2025). 

● Inherited biases carried over from the 

public code the models learned on 

(Menzies, Williams, & Zimmermann, 2019). 

● These issues remind us that sprinkling AI 

into a workflow isn’t just an upgrade—it 

forces us to rethink how we design, 

review, and secure software. 

3.5 Embracing a Hybrid Workflow 

What works best in practice is not total 

automation, but a partnership: let AI handle 

repetitive, boilerplate work while humans steer 

the creative, architectural, and ethical decisions 

(Amershi et al., 2019). In that model, teams set the 

vision and guardrails, and intelligent tools 

accelerate execution—together forging a more 

agile, resilient path through the software lifecycle. 

4. Theoretical Contribution: A 

Framework for AI Integration in 

Software Engineering 

As AI tools become integral components across 

all phases of software development, developers 

often risk focusing excessively on individual 

functionalities while overlooking the broader 

context. To provide clarity, this concise, five-stage 

roadmap illustrates how extensively AI integrates 

into the development lifecycle—and highlights 

actionable steps moving forward (Ahmed et al., 

2025). 

Basic Editor Helpers is a approach of this type 

of app as spell-check for your code. The system 

fixes typos, auto-closes brackets, or re-formats 

lines—nothing more. It doesn’t “know” your 

project; it just follows simple rules (Pujiharto E et 

al., 2024). 

● Examples: IntelliSense, static linters, syntax 

highlighters 

● Who’s in charge: You write the logic; AI just 

tidies up. 

Another extension like snippet prediction 

based is your editor that starts to guess your next 

move—whether that’s a token, a line, or a small 

block of code. It speeds up repetitive bits, but you 

still guide the overall design and review every 

suggestion. 

● Examples: GitHub Copilot, Tabnine 

● Who’s in charge: You steer the ship; AI 

handles the oars. 

At this level, context-aware partner is one of 

the artificial tools which AI reads more of your 

code—perhaps entire files or modules—and offers 

suggestions that fit your architecture. It can 

propose refactors, generate tests (Xie & Zhang, 

2018), or even learn your team’s style, acting a bit 

like a junior developer. 
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● Examples: CodiumAI (for tests), Amazon 

CodeWhisperer 

● Who’s in charge: You and AI make 

decisions together. 

While working with team, task-level autonomy 

handles large scale of task procedures, wher, AI 

can take on full tasks: write a feature from a spec, 

debug it, even deploy it. It keeps track of what it’s 

doing and talks to other tools on its own, though 

you still give the final sign-off. 

● Examples: Early demos of Devin AI 

● Who’s in charge: AI drives execution; you 

validate and approve. 

At the highest level, AI based full co-

engineering tools joins strategic planning and 

design discussions. It adapts as requirements 

change, learns from feedback, and truly 

collaborates in an ongoing development cycle 

(Jumper et al., 2021). Now questions of ownership, 

ethics, and governance become front and center. 

● Examples: Cutting-edge research 

prototypes from top AI labs 

● Who’s in charge: You set vision and 

policies; AI and humans build side by side. 

By placing your tools and practices on this 

ladder, you can:  

● Pinpoint your current stage. Are you just 

fixing syntax errors, or already 

experimenting with autonomous agents?  

● Anticipate new challenges. Each rise 

brings fresh risks—like maintaining code 

quality, managing ownership of 

generated code, or reviewing security 

(Shimmi et al., 2025; Menzies, Williams, & 

Zimmermann, 2019).  

5. Challenges and Limitations 

As AI tools become common in day-to-day 

software development, developers often find 

themselves drawn to appealing promises—

quicker coding, improved testing, or simple 

deployments(Wang S et al.,2023). Yet these 

benefits also bring challenging considerations 

around technical reliability, teamwork dynamics, 

and ethical obligations. These aren’t side issues; 

they go to the heart of making AI a reliable, 

sustainable partner in software engineering 

(Menzies, Williams, & Zimmermann, 2019). 

From the building trust and clarity prospect, 

when an LLM spits out a function or a service stub, 

the reasoning behind its choices is often hidden 

(Chen et al., 2021). Developers might paste in that 

code without a second thought—until something 

breaks and nobody truly knows why. Without clear 

explanations, tracing failures or performing security 

reviews becomes a guessing game, and the question 

“Who owns this bug?” quickly turns into “Who can 

even understand this code?” 

For avoiding skill erosion, it is letting AI 

handle repetitive chores—boilerplate, unit tests, 

simple debugging—boosts output in the short 

term. But if junior engineers never write that code 

themselves, they lose out on essential learning 

moments. Over time, teams risk becoming 

dependent on AI for every problem, rather than 

building the deep problem-solving skills that 

resilient software projects require (Jordan & 

Mitchell, 2015). 

Another hand, most AI assistants learn from 

public repos, so they’re blind to your company’s 

coding conventions, your bespoke frameworks, or 

that half-century-old legacy system in production. 

Aligned with your architecture by snippets that 

compile but don’t fit your architecture, or worse, 

violate hidden business rules. In complex systems, 

even small mismatches can trigger costly knock-

on effects (Kogan & Palen, 2018). 

On the other hand, for taking account to ethical 

and legal grey areas, as AI generates more and 

more of our code, questions about authorship and 

IP naturally arise. Who holds the copyright on 

that routine CRUD endpoint it wrote? At the same 

time, AI models trained using public codebases 

may accidentally incorporate security issues or 

biased coding habits, spreading these problems 

widely. There's also a concern that broader 

availability of advanced AI tools might increase 

the gap between large tech companies and smaller 

developers or open-source communities. These 

matters require expertise in law, ethics, and public 

policy—not just engineering (Menzies, Williams, 

& Zimmermann, 2019). 

When we need to avoid tool overload, the AI 

tool landscape is exploding: one plugin for docs, 

another to refactor, a third to generate tests—and 

that’s before you add niche solutions for 

performance tuning or security scans (Polu, 2025). 

Juggling dozens of overlapping assistants can 

actually slow you down, not speed you up. 

Without shared interfaces or an orchestration 

layer, you risk replacing one set of headaches—

manual tasks—with another: fractured workflows 

and tool fatigue (Kogan & Palen, 2018). 

Addressing these challenges is not optional—it 

is essential. The future of artificial software 

engineering depends not only on advancing AI 
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capabilities, but also on building trustworthy 

systems, human-centered workflows, and 

inclusive governance models (Amershi et al., 2019; 

Ahmed et al., 2025). Researchers, developers, and 

organizations must actively shape this future—not 

as passive adopters of tools, but as co-designers of 

the systems and cultures that surround them. 

6. Future Outlook & Open Questions 

The integration of AI into software engineering 

isn’t just a fad—it’s upending how we dream up, 

build, test, and run our code. Right now we’re 

only scratching the surface. As AI gets smarter 

and our problems get tougher, we’ll wind up in a 

world where people and machines really work 

side by side—and even invent whole new ways to 

engineer software. But with that promise comes a 

heap of questions we haven’t answered yet: 

technical puzzles, ethical tightropes, and social 

challenges we’ll have to sort out if AI-powered 

development is going to earn our trust. 

Picture an smarter, self-tweaking IDEs that really 

knows your project: it watches how your team 

codes, figures out your quirks, and then suggests 

tweaks—maybe a cleaner design here, a 

performance tweak there—without you having to 

ask. That’s the dream of an adaptive environment. 

The catch? We need AI that can learn without 

accidentally breaking things in production, and do it 

in a way we can still understand. Otherwise, we’ll 

end up with “helpful” suggestions we can’t explain. 

Today’s AI feels more like a helpful intern than 

a true teammate. The next chapter is co-

ownership: you and an AI agent splitting up tasks, 

talking through trade-offs, and genuinely sharing 

the end result. How do you even sketch out that 

relationship? Will we need roles like “AI coach” 

or “collaboration designer” to make sure both 

sides pull their weight? 

When an AI tool sets up your deployment 

pipeline or auto-writes a critical module, who do 

you call if it goes sideways? And how do you 

prevent hidden biases or security holes from 

slipping through? These aren’t just developer 

questions—they touch on law, ethics, and public 

policy. We need new ways to audit AI decisions, 

pin down accountability, and make sure these 

tools play by the rules we all agree on. 

Right now the AI scene feels like a crowded 

bazaar: one plugin for refactoring, another for 

docs, a third for tests. Someday, it might make 

sense to weave these into a single, smooth 

platform that handles your entire lifecycle. But 

that raises its own worries—will one company 

end up controlling everything? Can we keep 

things modular so you can swap in new tools 

without tearing down the whole house? 

Sure, AI can pump out code faster. But is that 

code better? Does it help teams think more 

creatively, or does it make us lazy? Does working 

alongside an AI change how we solve problems 

five years down the road? We need fresh metrics, 

long-term studies, and honest conversations about 

how engineers and AI actually co-create value. 

In short, building the future of software with AI 

won’t be just a tech project—it’ll be a team sport 

that pulls in experts from coding, design, ethics, 

law, and beyond. Only by mixing all those voices 

can we craft tools and processes that are powerful, 

transparent, and—most importantly—human-

centered (Amershi et al., 2019). 

7. Conclusion 

Artificial Software Engineering isn’t just about 

new tools—it’s about reimagining the very way 

we build and care for software. As AI steps in to 

help with coding, testing, and architecture, the 

line between what humans create and what 

machines generate is shifting daily. 

In this paper, we’ve surveyed prospects of 

today’s AI-powered helpers—GitHub Copilot, 

Devin AI, and the like—then laid out a simple, five-

stage view of their evolution, from basic suggestions 

all the way to true co-engineering. Along the way, 

we’ve highlighted both the big wins (faster 

prototyping, smarter debugging) and the tricky 

spots (trust, ownership, long-term upkeep). 

What comes into focus is a blended future: 

software shaped not by people or machines alone, 

but by their partnership. Getting there means 

adopting new habits—peer reviews for AI output, 

clear ethical guidelines (Amershi et al., 2019), and 

a willingness to learn from each other. Success 

won’t be about how much code we offload to 

algorithms; it’ll be about how those algorithms 

help us write better, more reliable software—

software that we understand, we trust, and we’re 

proud to stand behind. 
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