
Problems of Information Technology (2025), vol. 16, no. 2, 69-74

Received 3 March 2025, Received in revised form 5 May 2025, Accepted 19 May 2025

http://doi.org/10.25045/jpit.v16.i2.06

2077-4001/© 2025 This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Prospects of artificial software engineering

Zafar Jafarova, Atif Namazovb, Javid Abbaslic, Khalid Nazarovd, Sevinj Aliyevae

a,b,c,d,e Azerbaijan Technical University, H.Javid ave 25, AZ 1073 Baku, Azerbaijan

a zafar.cafarov@aztu.edu.az; b atif.namazov@aztu.edu.az; c cavid.abbasli@aztu.edu.az; d khalid.nazarov@aztu.edu.az;

e sevinj.aliyeva@aztu.edu.az

 a https://orcid.org/0009-0001-9327-1779; b https://orcid.org/0009-0008-2252-7328 ; c https://orcid.org/0009-0005-8982-0164;

d https://orcid.org/0009-0003-4010-2001 ; e https://orcid.org/0009-0005-9214-3723;

A R T I C L E I N F O

Keywords:

Artificial software engineering

Software development automation

Github copilot

Human–AI collaboration

AI ethics in programming

 A B S T R A C T

The merging of AI and software engineering marks a defining moment: intelligent

systems now move beyond simple code completion or test automation to become

active partners in each phase of development. We term this “Artificial Software

Engineering,” a collaborative framework where human ingenuity and machine

intelligence co–author software—from early prototypes and code generation to

debugging and architectural design (Menzies et al., 2019). By looking at platforms like

Devin AI and GitHub Copilot, we see clear benefits—faster iterations, deeper error

detection—but also face new challenges around trust, ownership, legal responsibility,

and maintaining AI‐influenced code over time. Rather than treating automation as an

end goal, we argue that this emerging discipline demands fresh thinking about ethics,

team dynamics, and design practices. Ultimately, the most successful software will

blend human insight with algorithmic strength to drive responsible innovation.

1. Introduction

Software engineering is in the midst of a

dramatic shift. What was once a craft performed

entirely by human hands—writing code step by

step, designing architectures on paper, and

running countless tests—now involves another

player: artificial intelligence. In the past few years,

AI has moved beyond simple helpers (like code

completion or automated tests) to join developers

as a genuine partner in creating software (Ahmed

et al., 2025). Today’s tools range from smart

suggestion engines that predict your next line of

code to autonomous agents that can spin up a

working prototype and even deploy it. As these

abilities improve, the line between “what

engineers do” and “what AI does” grows ever

thinner. We call this emerging way of working

“Artificial Software Engineering”—an approach

where intelligent systems weave into every phase

of development, from early planning to final

rollout (Menzies, Williams, & Zimmermann,

2019). Yet, despite all the buzz, there’s

surprisingly little careful study of this shift.

Conversations often swing between overhyped

sales pitches and narrowly focused performance

reports, without tackling the bigger picture. How

does AI really fit into a team? What new risks

does it introduce? And how do developers change

their daily routines when a machine shares their

workspace? This paper aims to fill that gap. We

look at real usage of tools like GitHub Copilot and

Devin AI to see where they shine and where they

stumble. We propose a simple framework for how

AI joins each stage of the development cycle—

ideation, coding, testing, deployment—and

highlight the sticky questions of ownership,

responsibility, teamwork, and maintenance that

16 (2)

2025

Available online at www.jpit.az

http://doi.org/10.25045/jpit.v15.i1.03
http://doi.org/10.25045/jpit.v15.i1.03
mailto:zafar.cafarov@aztu.edu.az
mailto:atif.namazov@aztu.edu.az
mailto:cavid.abbasli@aztu.edu.az
mailto:khalid.nazarov@aztu.edu.az
mailto:sevinj.aliyeva@aztu.edu.az
https://orcid.org/0009-0001-9327-1779
https://orcid.org/0009-0008-2252-7328
https://orcid.org/0009-0005-8982-0164
https://orcid.org/0009-0003-4010-2001
https://orcid.org/0009-0005-9214-3723

Z. Jafarov Problems of Information Technology (2025), vol. 16, no. 2, 69-74

70

come along for the ride (Amershi et al., 2019). In

the end, we believe software’s future won’t be a

contest of humans versus machines, but a

collaboration between the two. To make that

partnership work, we need fresh mindsets, new

processes, and software designs built for a world

where people and algorithms build side by side.

2. Background and Related Work

The use of AI in software development isn’t

brand-new, but its pace and scale have surged

lately. In the 1980s and ’90s, we experimented

with expert-system shells and rule-based engines

to tackle small chores—code linting, simple static

checks, or generating basic test cases(Islam M et

al.,2023). Those early tools, however, buckled

under the weight of growing codebases: their

rigid rules and fixed knowledge quickly fell out of

step with real-world complexity (Menzies,

Williams, & Zimmermann, 2019).

When machine learning and neural networks

entered the scene, everything shifted. Models

trained on vast code repositories began to spot

non-obvious patterns, surface hidden bugs, and

even guess what a developer might type next.

Natural language processing added another layer,

allowing these assistants to interpret comments,

draft documentation snippets, and “talk” with

engineers in everyday language.

The real game-changer arrived with large

language models spun into coding environments.

GitHub Copilot—built on OpenAI’s Codex—can

instantly turn a plain-English prompt into

working code, shortening the path from idea to

implementation (Kogan & Palen, 2018). Other

contenders, like DeepMind’s AlphaCode and

Devin AI, are pushing further—tackling end-to-

end tasks, from sketching out an algorithm to

running automated tests on the finished product.

Scholars have been quick to document these

advances: graph-based networks for code

reasoning (Allamanis et al., 2018), deep-learning

bug detectors outpacing classic static analyzers

(Pradel & Sen, 2018), and ML-driven refactoring

techniques that clean up messy code. Surveys by

Liu et al. (2020) and Yang et al. (2022) map AI’s

expanding footprint in test automation, defect

prediction, and code synthesis.

Yet most of this work either zeroes in on

narrow tool benchmarks or floats lofty predictions

without tying them to day-to-day developer

experiences. We still lack a grounded, lifecycle-

wide look at how AI reshapes every step of

software creation—from gathering requirements

and drafting prototypes through to deployment

and maintenance (Ahmed et al., 2025). Questions

around trusting AI suggestions, preserving code

quality, and defining who “owns” machine-

generated code often get relegated to the sidelines

(Amershi et al., 2019). And the rise of hybrid

teams—where humans and AI agents coauthor

software—raises thorny issues about

responsibility and collaboration that few have

tackled head-on (Harman, M., & Jones, B. F. 2001).

This paper tackles these gaps. By combining

real-world case studies of leading AI tools with a

fresh framework for understanding their

integration, we argue that “Artificial Software

Engineering” isn’t a distant dream—it’s

happening now. Making it work demands

human-centered approaches, new collaboration

models, and software designs built for a world

where people and intelligent systems build side

by side (Amershi et al., 2019; Ahmed et al., 2025).

3. Real-World Tool Analysis & Case

Studies

The arrival of AI-driven development

assistants has reshaped the software engineering

process, moving it away from purely manual,

rule-based routines toward environments where

humans and algorithms work side by side. To see

how this plays out in practice, we’ll look at several

prominent tools—grouped by their main roles:

creating code, finding and fixing errors,

producing documentation, and even taking on

entire projects autonomously.

3.1. GitHub Copilot: Beyond Autocomplete

GitHub Copilot, powered by OpenAI’s Codex,

is now a fixture inside editors like VS Code and

JetBrains IDEs. It does more than finish your

current line—it can draft whole functions or

propose boilerplate you didn’t write yourself.

Because it leans heavily on patterns common

across public repositories, many developers find

themselves writing in those same familiar styles—

even when a different approach might fit better. In

a 2022 survey, 88 percent of users said Copilot

boosted their productivity, yet over 40 percent

confessed to accepting suggestions without fully

grasping them (Kogan & Palen, 2018). That trade-

off—speed versus understanding—raises real

questions about code quality and long-term

Z. Jafarov Problems of Information Technology (2025), vol. 16, no. 2, 69-74

71

maintainability (Menzies, Williams, &

Zimmermann, 2019).

3.2. Devin AI: A Self-Sufficient Engineer

Released by Cognition Labs in 2024, Devin AI

aims to be more than a helper—it claims to be the

first “AI software engineer.” Rather than waiting

for prompts in your IDE, Devin lives in its own

mini operating environment, complete with a

command line, browser, and editor. In demos, it

has built simple websites, wired up video-

processing pipelines, and even closed bug tickets

found on GitHub—all without a human typing a

single line. But because access is still limited, we

don’t yet know how Devin handles massive

corporate codebases, ever-changing requirements,

or the thorny issues of who legally owns its

output (Ahmed et al., 2025)

3.3. Codium AI, Tabnine, and

CodeWhisperer: Niche Specialists

Not every AI assistant aims to do everything.

Codium AI zeroes in on test code—generating

thoughtful unit tests and explaining coverage

gaps, then slotting itself into existing CI/CD

workflows.

Tabnine focuses on on-premises privacy, letting

enterprises run completions against local models so

proprietary code never leaves their servers.

Amazon CodeWhisperer ties deeply into AWS

services, weaving in security scans and compliance

checks as part of its suggestion engine. These tools

show a shift toward lightweight, task-focused agents

that can be composed together inside larger

development ecosystems (Menzies, Williams, &

Zimmermann, 2019).

3.4 Real-World Friction

When teams actually deploy these assistants,

familiar challenges emerge:

● Skill atrophy in junior developers who lean

too heavily on AI hints (Amershi et al.,

2019).

● Context gaps when suggestions ignore an

application’s architecture or legacy quirks

(Allamanis et al., 2018).

● Hidden vulnerabilities introduced by

generated snippets that no one fully audits

(Shimmi et al., 2025).

● Inherited biases carried over from the

public code the models learned on

(Menzies, Williams, & Zimmermann, 2019).

● These issues remind us that sprinkling AI

into a workflow isn’t just an upgrade—it

forces us to rethink how we design,

review, and secure software.

3.5 Embracing a Hybrid Workflow

What works best in practice is not total

automation, but a partnership: let AI handle

repetitive, boilerplate work while humans steer

the creative, architectural, and ethical decisions

(Amershi et al., 2019). In that model, teams set the

vision and guardrails, and intelligent tools

accelerate execution—together forging a more

agile, resilient path through the software lifecycle.

4. Theoretical Contribution: A

Framework for AI Integration in

Software Engineering

As AI tools become integral components across

all phases of software development, developers

often risk focusing excessively on individual

functionalities while overlooking the broader

context. To provide clarity, this concise, five-stage

roadmap illustrates how extensively AI integrates

into the development lifecycle—and highlights

actionable steps moving forward (Ahmed et al.,

2025).

Basic Editor Helpers is a approach of this type

of app as spell-check for your code. The system

fixes typos, auto-closes brackets, or re-formats

lines—nothing more. It doesn’t “know” your

project; it just follows simple rules (Pujiharto E et

al., 2024).

● Examples: IntelliSense, static linters, syntax

highlighters

● Who’s in charge: You write the logic; AI just

tidies up.

Another extension like snippet prediction

based is your editor that starts to guess your next

move—whether that’s a token, a line, or a small

block of code. It speeds up repetitive bits, but you

still guide the overall design and review every

suggestion.

● Examples: GitHub Copilot, Tabnine

● Who’s in charge: You steer the ship; AI

handles the oars.

At this level, context-aware partner is one of

the artificial tools which AI reads more of your

code—perhaps entire files or modules—and offers

suggestions that fit your architecture. It can

propose refactors, generate tests (Xie & Zhang,

2018), or even learn your team’s style, acting a bit

like a junior developer.

Z. Jafarov Problems of Information Technology (2025), vol. 16, no. 2, 69-74

72

● Examples: CodiumAI (for tests), Amazon

CodeWhisperer

● Who’s in charge: You and AI make

decisions together.

While working with team, task-level autonomy

handles large scale of task procedures, wher, AI

can take on full tasks: write a feature from a spec,

debug it, even deploy it. It keeps track of what it’s

doing and talks to other tools on its own, though

you still give the final sign-off.

● Examples: Early demos of Devin AI

● Who’s in charge: AI drives execution; you

validate and approve.

At the highest level, AI based full co-

engineering tools joins strategic planning and

design discussions. It adapts as requirements

change, learns from feedback, and truly

collaborates in an ongoing development cycle

(Jumper et al., 2021). Now questions of ownership,

ethics, and governance become front and center.

● Examples: Cutting-edge research

prototypes from top AI labs

● Who’s in charge: You set vision and

policies; AI and humans build side by side.

By placing your tools and practices on this

ladder, you can:

● Pinpoint your current stage. Are you just

fixing syntax errors, or already

experimenting with autonomous agents?

● Anticipate new challenges. Each rise

brings fresh risks—like maintaining code

quality, managing ownership of

generated code, or reviewing security

(Shimmi et al., 2025; Menzies, Williams, &

Zimmermann, 2019).

5. Challenges and Limitations

As AI tools become common in day-to-day

software development, developers often find

themselves drawn to appealing promises—

quicker coding, improved testing, or simple

deployments(Wang S et al.,2023). Yet these

benefits also bring challenging considerations

around technical reliability, teamwork dynamics,

and ethical obligations. These aren’t side issues;

they go to the heart of making AI a reliable,

sustainable partner in software engineering

(Menzies, Williams, & Zimmermann, 2019).

From the building trust and clarity prospect,

when an LLM spits out a function or a service stub,

the reasoning behind its choices is often hidden

(Chen et al., 2021). Developers might paste in that

code without a second thought—until something

breaks and nobody truly knows why. Without clear

explanations, tracing failures or performing security

reviews becomes a guessing game, and the question

“Who owns this bug?” quickly turns into “Who can

even understand this code?”

For avoiding skill erosion, it is letting AI

handle repetitive chores—boilerplate, unit tests,

simple debugging—boosts output in the short

term. But if junior engineers never write that code

themselves, they lose out on essential learning

moments. Over time, teams risk becoming

dependent on AI for every problem, rather than

building the deep problem-solving skills that

resilient software projects require (Jordan &

Mitchell, 2015).

Another hand, most AI assistants learn from

public repos, so they’re blind to your company’s

coding conventions, your bespoke frameworks, or

that half-century-old legacy system in production.

Aligned with your architecture by snippets that

compile but don’t fit your architecture, or worse,

violate hidden business rules. In complex systems,

even small mismatches can trigger costly knock-

on effects (Kogan & Palen, 2018).

On the other hand, for taking account to ethical

and legal grey areas, as AI generates more and

more of our code, questions about authorship and

IP naturally arise. Who holds the copyright on

that routine CRUD endpoint it wrote? At the same

time, AI models trained using public codebases

may accidentally incorporate security issues or

biased coding habits, spreading these problems

widely. There's also a concern that broader

availability of advanced AI tools might increase

the gap between large tech companies and smaller

developers or open-source communities. These

matters require expertise in law, ethics, and public

policy—not just engineering (Menzies, Williams,

& Zimmermann, 2019).

When we need to avoid tool overload, the AI

tool landscape is exploding: one plugin for docs,

another to refactor, a third to generate tests—and

that’s before you add niche solutions for

performance tuning or security scans (Polu, 2025).

Juggling dozens of overlapping assistants can

actually slow you down, not speed you up.

Without shared interfaces or an orchestration

layer, you risk replacing one set of headaches—

manual tasks—with another: fractured workflows

and tool fatigue (Kogan & Palen, 2018).

Addressing these challenges is not optional—it

is essential. The future of artificial software

engineering depends not only on advancing AI

Z. Jafarov Problems of Information Technology (2025), vol. 16, no. 2, 69-74

73

capabilities, but also on building trustworthy

systems, human-centered workflows, and

inclusive governance models (Amershi et al., 2019;

Ahmed et al., 2025). Researchers, developers, and

organizations must actively shape this future—not

as passive adopters of tools, but as co-designers of

the systems and cultures that surround them.

6. Future Outlook & Open Questions

The integration of AI into software engineering

isn’t just a fad—it’s upending how we dream up,

build, test, and run our code. Right now we’re

only scratching the surface. As AI gets smarter

and our problems get tougher, we’ll wind up in a

world where people and machines really work

side by side—and even invent whole new ways to

engineer software. But with that promise comes a

heap of questions we haven’t answered yet:

technical puzzles, ethical tightropes, and social

challenges we’ll have to sort out if AI-powered

development is going to earn our trust.

Picture an smarter, self-tweaking IDEs that really

knows your project: it watches how your team

codes, figures out your quirks, and then suggests

tweaks—maybe a cleaner design here, a

performance tweak there—without you having to

ask. That’s the dream of an adaptive environment.

The catch? We need AI that can learn without

accidentally breaking things in production, and do it

in a way we can still understand. Otherwise, we’ll

end up with “helpful” suggestions we can’t explain.

Today’s AI feels more like a helpful intern than

a true teammate. The next chapter is co-

ownership: you and an AI agent splitting up tasks,

talking through trade-offs, and genuinely sharing

the end result. How do you even sketch out that

relationship? Will we need roles like “AI coach”

or “collaboration designer” to make sure both

sides pull their weight?

When an AI tool sets up your deployment

pipeline or auto-writes a critical module, who do

you call if it goes sideways? And how do you

prevent hidden biases or security holes from

slipping through? These aren’t just developer

questions—they touch on law, ethics, and public

policy. We need new ways to audit AI decisions,

pin down accountability, and make sure these

tools play by the rules we all agree on.

Right now the AI scene feels like a crowded

bazaar: one plugin for refactoring, another for

docs, a third for tests. Someday, it might make

sense to weave these into a single, smooth

platform that handles your entire lifecycle. But

that raises its own worries—will one company

end up controlling everything? Can we keep

things modular so you can swap in new tools

without tearing down the whole house?

Sure, AI can pump out code faster. But is that

code better? Does it help teams think more

creatively, or does it make us lazy? Does working

alongside an AI change how we solve problems

five years down the road? We need fresh metrics,

long-term studies, and honest conversations about

how engineers and AI actually co-create value.

In short, building the future of software with AI

won’t be just a tech project—it’ll be a team sport

that pulls in experts from coding, design, ethics,

law, and beyond. Only by mixing all those voices

can we craft tools and processes that are powerful,

transparent, and—most importantly—human-

centered (Amershi et al., 2019).

7. Conclusion

Artificial Software Engineering isn’t just about

new tools—it’s about reimagining the very way

we build and care for software. As AI steps in to

help with coding, testing, and architecture, the

line between what humans create and what

machines generate is shifting daily.

In this paper, we’ve surveyed prospects of

today’s AI-powered helpers—GitHub Copilot,

Devin AI, and the like—then laid out a simple, five-

stage view of their evolution, from basic suggestions

all the way to true co-engineering. Along the way,

we’ve highlighted both the big wins (faster

prototyping, smarter debugging) and the tricky

spots (trust, ownership, long-term upkeep).

What comes into focus is a blended future:

software shaped not by people or machines alone,

but by their partnership. Getting there means

adopting new habits—peer reviews for AI output,

clear ethical guidelines (Amershi et al., 2019), and

a willingness to learn from each other. Success

won’t be about how much code we offload to

algorithms; it’ll be about how those algorithms

help us write better, more reliable software—

software that we understand, we trust, and we’re

proud to stand behind.

References

Ahmed, I., Aleti, A., Cai, H., Chatzigeorgiou, A., He, P., Hu, X.,

Pezzè, M., Poshyvanyk, D., & Xia, X. (2025). Artificial

Intelligence for Software Engineering: The Journey so far

and the Road ahead. ACM Transactions on Software

Engineering and Methodology, 34(5), 1-27.

https://doi.org/10.1145/3719006

https://doi.org/10.1145/3719006

Z. Jafarov Problems of Information Technology (2025), vol. 16, no. 2, 69-74

74

Allamanis, M., Brockschmidt, M., & Khademi, M. (2018).

Learning to represent programs with graphs. In

International Conference on Learning Representations

(ICLR) (pp. 1-17). https://doi.org/10.48550/arXiv.1711.00740

Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2014).

Power to the People: The role of humans in interactive

machine learning. AI Magazine, 35(4), 105-120.

https://doi.org/10.1609/aimag.v35i4.2513

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.

P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,

Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,

Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., et al.

(2021). Evaluating large language models trained on code.

ArXiv. https://doi.org/10.48550/arXiv.2107.03374

Harman, M., & Jones, B. F. (2001). Search-based software

engineering. Information and Software Technology, 43(14),

833–839. https://doi.org/10.1016/S0950-5849(01)00189-6

Islam, M., Khan, F., Alam, S., & Hasan, M. (2023). Artificial

intelligence in software testing: A systematic review. In

Proceedings of the IEEE Region 10 Conference (TENCON)

(pp. 524–529). IEEE.

https://doi.org/10.1109/TENCON58879.2023.10322349

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning:

Trends, perspectives, and prospects. Science, 349(6245),

255–260. https://doi.org/10.1126/science.aaa8415

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,

Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek,

A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A.,

Ballard, A. J., Cowie, A., Nikolov, S., Jain, R., Adler, J.,

Back, T., et al. (2021). Highly accurate protein structure

prediction with AlphaFold. Nature, 596(7873), 583-589.

https://doi.org/10.1038/s41586-021-03819-2

Kogan, M., & Palen, L. (2018). Conversations in the eye of the

storm: At-scale features of conversational structure in a

high-tempo, high-stakes microblogging environment. In

Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems (pp. 1-13).

https://doi.org/10.1145/3173574.3173658

Polu, O. R. (2025). AI-Driven Automatic Code Refactoring for

Performance Optimization. International Journal of Science

and Research, 14(1), 1316-1320.

https://doi.org/10.21275/SR25011114610

Pradel, M., & Sen, K. (2018). Deepbugs: A learning approach to

name-based bug detection. Proceedings of the ACM on

Programming Languages, 2(OOPSLA), 1-25.

https://doi.org/10.1145/3276517

Pujiharto, E. W., Tikasni, E., Lewu, R., Sudirman, S., & Utami,

E. (2024). Systematic literature review on software

requirement engineering in 5.0 Industry: Current practices

and future challenges. International Journal of Advanced

Science Computing and Engineering, 6(3), 104–108.

https://doi.org/10.62527/ijasce.6.3.152

Shimmi, S., Okhravi, H., & Rahimi, M. (2025). AI-based

software vulnerability detection: A systematic literature

review. https://doi.org/10.48550/arXiv.2506.10280

Wang, S., Huang, L., Gao, A., Ge, J., Zhang, T., Feng, H.,

Satyarth, I., Chen, C., Liu, Z., & Wang, Q. (2023).

Machine/deep learning for software engineering: A

systematic literature review. IEEE Transactions on

Software Engineering, 49(3), 1188–1231.

https://doi.org/10.1109/TSE.2022.3173346

Yang, Y., Xia, X., Lo, D., & Grundy, J. (2022). A survey on deep

learning for software engineering. ACM Computing

Surveys (CSUR), 54(10s), 1-73.

https://doi.org/10.1145/3505243

https://doi.org/10.48550/arXiv.1711.00740
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1109/TENCON58879.2023.10322349
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1145/3173574.3173658
https://doi.org/10.21275/SR25011114610
https://doi.org/10.1145/3276517
https://doi.org/10.62527/ijasce.6.3.152
https://doi.org/10.48550/arXiv.2506.10280
https://doi.org/10.1109/TSE.2022.3173346
https://doi.org/10.1145/3505243

