НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА
ОБ ОДНОЙ МОДЕЛИ ОПТИМИЗАЦИИ МОНИТОРИНГА КОМПЬЮТЕРНЫХ СЕТЕЙ (рус.)
Шыхалиев Рамиз Г.

Предлагается модель оптимизации мониторинга компьютерных сетей (КС), которая позволяет минимизировать время, затрачиваемое на мониторинг. Основной целью при этом является оптимизация мониторинга сетевых узлов КС при заданных сетевых ресурсах. Для достижения этой цели предлагается использовать модель системы поллинга, оптимизируя которую можно достичь минимизации времени мониторинга. (стр.17-25)

Ключевые слова: компьютерные сети, сетевой мониторинг, поллинг сетевых узлов, SNMP-поллинг, системы поллинга, дисциплина поллинга, среднее время ожидания
Литература
  • Levy H., Sidi M. Polling systems: applications, modeling, and optimization. IEEE Transactions on Communications, 1990, vol. 38, no. 10, pp.1750–1760.
  • Ed Wilson. Network Monitoring and Analysis. A Protocol Approach to Troubleshooting, Prentice Hall, Inc. Upper Saddle River, New Jersey, 2002, 350. p.
  • Takagi H., Queueing analysis of polling models: an update. In: H. Takagi (ed.), Stochastic Analysis of Computer and Communication Systems. North-Holland Publ. Cy., Amsterdam, 1990, pp. 267-318.
  • Borst S.C., Boxma O.J. Polling systems with and without switch-over times // Operations Research, 1997, vol. 45, no 4, pp.536–543.
  • Forouzan I., Behrouz A., Data communications and networking. - 4th ed., 2007, 1134 p.
  • Mei R.D., Resing J.A.C. Analysis of polling models with two-stage gated service: fairness versus effi In: L. Mason, T. Drwiega, and J. Yan (Eds.), Managing Traffic Performance in Converged Networks – the Interplay between Convergent and Divergent Forces, ITC2007, Lecture Notes in Computer Science 4516, 2007, pp.544–555.
  • Mei R.D., Resing J.A.C. Polling systems with two-phase gated service : heavy traffic results for the waiting-time distributions // Probability in the Engineering and Informational Sciences, 2008, vol.4, no.22, pp.623–651.
  • Mei R. D., Roubos A. Polling models with multi-phase gated service // Operations Research, 2012, vol.1, no.198, pp.25–56.
  • Leung K.K. Cyclic-service systems with probabilistically-limited service // IEEE Journal on Selected Areas in Communications, 1991, vol.2, no.9, pp.185–193.
  • Boxma O.J, Levy H., Yechiali U. Cyclic reservation schemes for efficient operation of multiple-queue single-server systems / Annals of Operations Research, 1992, vol.3, no.35, pp.187–208.
  • Keilson J., Servi L.D. Oscillating random walk models for GI/G/I vacation systems with Bernoulli schedules // Journal of Applied Probability, 1986, no.23, pp.790–802.
  • Levy H. Analysis of cyclic polling systems with binomial gated service. In: Hasegawa T., Takagi H., Takahashi Y. (Eds.), Performance of Distributed and Parallel Systems, North-Holland, Amsterdam, 1989, pp.127–139.
  • Levy H., Sidi M., Boxma O.J. Dominance relations in polling systems // Queueing Systems, 1990, vol. 6, issue 1, pp.155-171.
  • Case J., Fedor M., Schoffstall M., Davin J.: Simple Network Management Protocol (SNMP), RFC 1157, Network Working Group, IETF, 1990.
  • Stallings W., “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”, 1996, Addison Wesley
  • McCloghrie K., Rose M., Management information base for network management of TCP/IP-based internets: MIB-II, RFC 1213, March 1991.
  • Park S., Park, M., An efficient transmission for large MIB tables in polling-based SNMP / 10th International Conference on Telecommunications, 2003, vol.1, pp.246-252.
  • Takagi H. Analysis of polling systems. MIT Press (Cambridge, Mass.), 1986, 197 p.
  • Boxma O. J. Static optimization of queueing systems / Recent Trends in Optimization Theory and Applications. Ed. Agwal R.P. Singapore: World Scientific Publ., 1995, pp.1-16.
  • Boxma O. J., Levy H., Weststrate J.A. Optimization of polling systems, In: Perfomence ’90, eds. P.J.B. King, I. Mitrani, R.J. Pooley (North-Holland, Amsterdam) pp.349-361.