АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий

АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий

АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий

АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий

АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий
АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ - Проблемы Информационных Технологий
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА

№2, 2010

АНАЛИЗ И КЛАССИФИКАЦИЯ СЕТЕВОГО ТРАФИКА КОМПЬЮТЕРНЫХ СЕТЕЙ

Шыхалиев Р.Г.

Данная статья посвящена анализу и моделированию классификации сетевого трафика компьютерных сетей (КС), которые очень важны при их мониторинге. Для  моделирования  классификации  сетевого трафика предложено использование методов машинного обучения без учителя. В качестве метода обучения без учителя использован алгоритм кластеризации k-средних. (стр. 15-23)

Ключевые слова: сетевой трафик, кластеризация, алгоритм k-средних.
Литература
  • C. Logg and L.Cottrell, Characterization of the Traffic between SLAC and the Internet, July 2003. 
    http://www.slac.stanford.edu/comp/net/slac-netflow/html/SLAC-netflow.html.
  • M.L.Bailey, B.Gopal, M.A.Pagels, L.L.Peterson, and P. Sarkar, PathFinder: A pattern-based packet classifier. Proceedings of the First Symposium on Operating Systems Design and Implementation, November 1994. pp.115–123.
  • P. Gupta and N.McKeown, Algorithms for packet classification // IEEE Network Magazine. 2001, vol. 15, no. 2, pp.24–32.
  • G.Szabo, D.Orincsay, S.Malomsoky, and I.Szabo, On the validation of traffic classification algorithms // Proceedings of the 9th International Passive and Active Measurement conference, April 29–30, 2008, pp.72–81.
  • B.C.Park, Y.J.Win, M.S.Kim, and J.W.Hong, Towards automated application signature generation for traffic identification //NOMS: Network operations and management symposium, Salvador, Bahia, Brazil,7–11 April 2008, pp.160–167.
  • H. Kim, M.Fomenkov, D.Barman, M.Faloutsos, and K.Lee, Internet traffic classification demystified: myths, Caveats, and the Best Practices // Proceedings of the 4th Conference on Emerging Network Experiment and Technology, December 09–12, 2008, pp.112–124.
  • S. Sen, O.Spatscheck, and D.Wang, Accurate, scalable In-network identification of P2P traffic using application signatures // Proceedings of the 13th International conference on World Wide Web. New York, USA, May 17–20, 2004. pp.512–521.
  • L7-filter, Application layer packet classifier for linux, 2009 -
    http://l7-filter.sourceforge.net/ (accessed 2009-04-02).
  • W.Moore and D.Papagiannaki, Toward the Accurate Identification of Network Applications // In Proceedings of the Sixth Passive and Active Measurement Workshop, March 31 – April 1, 2005, pp.41–54.
  • W. Li, M.Canini, A.W.Moore and R.Bolla,  Efficient application identification and the temporal and spatial stability of classification schema // Computer Networks, 2009, vol. 53, # 6, pp.790–809.
  • A.W.Moore and D.Zuev, Internet traffic classification using bayesian analysis techniques // Proceeding of the Conference on Measurement and Modeling of Computer Systems, Banff, Alberta, Canada, June 06-10, 2005, pp.50-60.
  • N.J. Nilsson, Introduction to Machine Learning http://robotics.stanford.edu/people/nilsson/MLDraftBook/MLBOOK.pdf, accessed September 2009.
  • L. Zhanh and J.Tang, Characterization and performance study of IP  traffic in WDM networks // Computer communications, 2001, No.24, pp.1702–1713.
  • A. Feldmann, Characteristics of TCP connection arrivals Technical report of the AT&T Labs Research, 1998.
  • R. Caceras, P.Danzig, S.Jamin, and D.Mitzel, Characteristics of Wide-Area TCP/IP Conversations, ACM SIGCOMM, 1991.
  • IANA, http://www.iana.org/assignments/port-numbers (as of August 2005).
  • V. Paxson, Empirically derived analytic models of wide-area TCP connections, IEEE/ACM Trans. Netw., 1994, vol. 2, no. 4, pp.316–336.
  • V. Paxson and S.Floyd, Wide area traffic: the failure of Poisson modeling, IEEE/ACM Trans. Netw., 1995, vol. 3, no. 3, pp.226–244.
  • T. Karagiannis, K.Papagiannaki, and M.Faloutsos, BLINC: multilevel traffic classification in the dark // Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Pomputer Communications, New York, USA, 2005, pp.229–240.
  • CAIDA Homepage, http://www.caida.org.
  • I.D. Graham, S.F.Donnelly, S.Artin, J.Martens, and J.G.Cleary, Non intrusive and Accurate Measurement of Unidirectional Delay and Delay Variation on the Internet // Proceedings of the Internet Society's 8th Annual Networking Conference, Geneva, July 21–24, 1998,
  • B. Huffaker, M.Fomenkov, D.Moore, E.Nemeth, and K.Claffy, Measurements of the Internet topology in Asia-pacific Region, 2000, http://www.caida.org/outreach/papers/asia_paper/
  • M. Dunham, Data Mining: Introductory and Advance Topics. Prentice Hall, New Jersey, 1st edition, 2003.
  • J. Erman, A.Mahanti, and M.Arlitt, Internet Traffic Identification using Machine Learning. In GLOBECOM'06, San Francisco, USA, November, 2006.
  • A.K.Jain, M.N.Murty, and P.J.Flynn, Data Clustering: A Review // ACM Computing Surveys, 1999, vol.31, # 3, pp.254–323.
  • D.Jiang, C.Tang, and A.Zhang, Cluster Analysis for Gene Expression Data: A Survey // IEEE Transactions On Knowledge And Data Engineering, vol. 16, #12,  December 2004, pp.1370–1386.