ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий

ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий

ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий

ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий

ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий
ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ - Проблемы Информационных Технологий
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА

№2, 2014

ФЕНОМЕН BIG DATA: ПРОБЛЕМЫ И ВОЗМОЖНОСТИ

Алгулиев Расим М., Гаджирагимова Макруфа Ш.

Эта статья посвящена феномену big data. В статье исследуются термин big data, возможности, проблемы этой технологии. Анализируются  3V-концепции и задачи анализа больших данных. Рассматриваются существующие программные и аппаратные продукты в реализации этой концепции. (стр. 3-16)

Ключевые слова: big data, data science, big data analytics, NoSQL, MapReduce, Hadoop, OLAP
Литература
  • Worldwide Big Data Technology and Services 2013–2017 Forecast, (http://www.idc.com)
  • Big data: The next frontier for innovation, competition, and productivity. Analyst report, McKinsey Global Institute, May 2011. http://www.mckinsey.com/
  • The digital universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Study report, IDC, December 2012. www.emc.com/leadership/digital-universe/
  • Beyer M. A. and Laney D. The importance of big data: A definition. Stamford, CT: Gartner, 2012.
  • Diebold F. On the Origin(s) and Development of the Term "Big Data". Pier working paper archive, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, 2012.
  • Lohr S. The Origins of ‘Big Data’: An Etymological Detective Story . http://bits.blogs.nytimes.com/2013/
  • Diebold F. Big Data Dynamic Factor Models for Macroeconomic Measurement and Forecasting. / Discussion Read to the Eighth World Congress of the Econometric Society, 2000.
  • Clifford L. Big data: How do your data grow? // Nature, 2008, vol.455, pp.28–29.
  • Google Trends for Big Data, 2013.
  • Is Data The New Oil? http://www.forbes.com/sites/perryrotella/2012/04/02/
  • Data Is the New Oil of the Digital Economy. http://www.wired.com/2014/07/
  • Big Data, Big Impact: New Possibilities for International Development, 2012. weforum.org
  • Moore's law applied to big data. http://www.datasciencecentral.com/forum/
  • Big Data: Big today, normal tomorrow, ITU-T Technology Watch Report, November 2013.
  • https://amplab.cs.berkeley.edu/
  • NIST Big Data Working Group (NBD-WG). http://bigdatawg.nist.gov/home.php.
  • Madden S. From Databases to Big Data // IEEE Internet Computing, 2012, vol.16, issue 3, pp.4–6.
  • Witt D., Gray J. Parallel Database Systems: The Future of High Performance Database Systems // Communications of the ACM, 1992, 35(6), pp. 85–98.
  • Laney D. 3D Data Management: Controlling Data Volume, Velocity and Variety. Technical report, META Group, Inc (now Gartner, Inc.), February 2001. http://blogs.gartner.com/
  • Ward J.S. and Barker A. Undefined By Data: A Survey of Big Data Definitions. http://arxiv.org/pdf/1309.5821.pdf
  • What is big data? - Bringing big data to the enterprise, 2013. http://www-01.ibm.com/
  • Soares S. Big Data Governance - An Emerging Imperative. MC Press Online, LLC, 1st edition, 2012.
  • Chen J., Chen Y., Xiaoyong D., et.all. Big data challenge: a data management perspective // Frontiers of Computer Science in China, 2013, 7(2), pp.157–164.
  • Dean J., Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters/ Proceedings of the Sixth Symposium on Operating System Design and Implementation, volume 6 of OSDI ’04, Berkeley, CA, USA, 2004, pp.137–150.
  • Ghemawat S., Gobioff H. and Leung S.T. The Google File System / Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, New York, USA, October 2003, pp.29–43.
  • Hadoop, http://hadoop.apache.org/
  • Hadoop MapReduce. http://hadoop.apache.org/docs/stable/mapred_tutorial.html
  • Hadoop Distributed File System. http://hadoop.apache.org/docs/
  • Big Data Research and Development Initiative. whitehouse.gov/
  • InfoSphere Platform: Big Data Analytics, 2013, http://www-01.ibm.com/software/
  • Oracle and Big Data: Big Data for the Enterprise, 2013, http://www.oracle.com/
  • Big Data, 2013, http://www.microsoft.com/
  • Big Data - What Is It? 2013, http://www.sas.com/big-data/
  • SAP HANA integrates predictive analytics, text and big data in a single package, 2013, http://www54.sap.com/
  • Big Data Solutions, 2013, http://www8.hp.com/
  • Stonebraker M. Errors in Database Systems, Eventual Consistency, and the CAP Theorem // Communications of the ACM, April, 2010.
  • Agrawal D., Das S., Amr El Abbadi. Big Data and Cloud Computing: Current State and Future Opportunities / EDBT, march 22–24, 2011, Uppsala, Sweden.
  • UN Global Pulse. http://www.unglobalpulse.org.
  • Черняк Л. Большие Данные – новая теория и практика. М.: Открытые системы, 2011, №10.
  • Алгулиев Р.М., Фаталиев Т.Х., Гаджирагимова М.Ш. К созданию корпоративной распределенной архивной системы // Известия НАНА, 2003, №3, с.143–147.
  • Menon J., Treiber K. Daisy: A Virtual-disk Hierarchical storage Manager, Performance Evaluation Review, 25(3), December 1997, pp.37–44.
  • Chen Y. “Information Valuation for Information Lifecycle Management” / Proceedings of Autonomic Computing, June 2005, pp.135–146.
  • Foster Y., Kesselman C., Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations // Intern. J. of High Performance Computing Applications, 2001, 15(3), 200–222, www.globus.org
  • McAfee A. and Brynjolfsson E. Big Data: The Management Revolution. Harvard Business Review, 2012, vol.90, no.10, pp.60–68.
  • Селезнев К. Проблемы анализа больших данных // Открытые системы, 2012, №7, с.25–29.
  • Fan W., Bifet A. Mining Big Data: Current Status, and Forecast to the Future / SIGKDD, vol.14, issue 2, pp.1–5.
  • Mayer-Schönberger V. and Cukier K. Big Data - A Revolution That Will Transform How We Live, Work and Think. John Murray (Publishers), 2013.
  • Szala A., Gray J. 2020 Computing: Science in an exponential world // Nature, 2006, 440, pp.413–414.
  • Anderson C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete // Wired Magazine, July 2008. http://www.wired.com/science/
  • Bakshi, K.Considerations for big data: Architecture and approach / Proceedings of the IEEE Aerospace Conference, 3-10 march, 2012, pp.1–7.
  • Fayyad U. Big Data Analytics: Applications and Opportunities in On-line Predictive Modeling, 2012. http://big-data-mining.org/keynotes/
  • Черняк Л. Вычисления с акцентом на данные // Открытые системы, 2008, №8, с.36–39.
  • Zhang J., Huang M. L. 5Ws Model for Big Data Analysis and Visualization / Proceedings of the IEEE 16th International Conference on Computational Science and Engineering (CSE), 2013, pp.1021–1028.
  • Siba F.N., Mohammad S., Kidwai H.K., Qamar B., Awwad F. Parallel Implementation and Performance Analysis of a 3D Oil Reservoir Data Visualization Tool on the Cell Broadband Engine and CUDA GPU / Proceedings of the 14th International Conference on High Performance Computing and Communication & 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012, pp.970–975.
  • Wu X., Zhu X., Wu G.Q., Ding W. Data mining with bigdata // IEEE Transactionson Knowledge and Data Engineering, 2014, vol.26, issue 1, pp.97–107.
  • Big Data Market Size and Vendor Revenues. http://wikibon.org/wiki/