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 A B S T R A C T 

Examining the opinions of the people might provide us with valuable knowledge. Sentiment 

analysis is a method for analyzing textual data that helps find subjective information, such 

as opinions and feelings that individuals or groups have expressed. It improves our 

understanding of human language using deep learning and natural language techniques. 

Several deep learning models, including RNNs, LSTMs, GRUs, and their bidirectional 

variants, are compared in this work. Three publicly available datasets - the imdb_reviews, 

Twitter Sentiment Dataset, and Emotions dataset were used in the investigation. 

Accuracy performance is evaluated for six deep learning models. According to 

experimental studies, bidirectional structures outperform their unidirectional 

counterparts in most cases. Across several datasets, the bidirectional models 

continuously produced the best accuracy. 

1. Introduction 

The study of sentiments and views represented 

in textual data is the primary objective of the broad 

area of sentiment analysis. Sentiment analysis is 

the process of interpreting a text's intended context 

based just on its content (Alguliyev, Aliguliyev & 

Niftaliyeva, 2019). It involves classification and 

analysis, to determine if a text expresses a positive, 

negative, or neutral sentiment. Opinion mining is 

another term for sentiment analysis (Wankhade, 

Rao, & Kulkarni, 2022). In general, by examining 

vast amounts of text data, sentiment analysis 

assists companies and organizations in learning 

more about client satisfaction and society's views. 

Deep learning models are frequently used and 

perform very effectively in tasks, including 

sentiment analysis (Alguliyev, Aliguliyev, & 

Abdullayeva, 2019). They have been trained on 

vast amounts of data to acquire instances of 

language, thus these models can identify 

complicated patterns and relations in textual data 

and can properly categorize text into many 

sentiment categories. 

The primary goal of this study is to compare 

some deep learning models for sentiment analysis 

and assess each model's performance. In contrast to 

several other research works that concentrate on a 

single dataset or datasets that are similar in nature, 

our study includes three datasets that have 

significantly different characteristics. This study 

aims to analyze these models' performances, to 

determine the correctness of several deep learning 

models about their ability to accurately identify 

sentiment from textual input and offer valuable 

guidance to researchers in the field. 

The remaining sections of the paper are 

structured as follows: The description of deep 

learning models is presented in Sections 3, this 

gives the overview of the deep learning models 
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used for sentiment analysis. Section 4 contains the 

analysis of deep learning models. Section 4 

presents the results of our comparison study on 

deep learning models, as well as accuracy and loss 

graphs to analyze these models' performances. 

Section 5 provides the conclusion. 

2. Related works 

As a result the enormous volume of textual data 

created online, sentiment analysis has become as a 

key component of natural language processing 

(NLP). In the recent past, rule-based systems or 

lexicon-based techniques were used in sentiment 

analysis. But as large data has grown and online 

content has become more complicated, machine 

learning methods—especially deep learning 

models—have become a crucial tool for sentiment 

analysis. Recurrent neural networks, long short-

term memory networks, and gated recurrent units 

are three popular deep learning models that are 

used widely because of their ability to identify 

context and sequential dependencies in text data. 

Because of their recurrent connections, which 

enables them to retain a memory of the previous 

inputs in the sequence, recurrent neural networks 

have proven essential in processing textual data. 

Unfortunately, long-term dependencies in the data 

are difficult to identify with RNNs because to the 

vanishing gradient problem (Bengio et al., 1994). 

Long Short-Term Memory networks (Hochreiter & 

Schmidhuber, 1997) were proposed in order to 

address these constraints. In sentiment analysis 

tasks, LSTMs have demonstrated impressive 

performance, especially for texts such as reviews or 

articles (Hassan & Mahmood, 2017). The LSTM 

architecture become simpler with Gated Recurrent 

Units (Cho et al., 2014) but still perform well with 

long sequences. The efficacy of RNNs, GRUs and 

LSTMs for sentiment analysis has been compared 

in research. For instance, Tang et al. (2015) 

examined four large-scale review datasets, they 

found that LSTMs and GRUs performed better 

than traditional RNNs in terms of accuracy as a 

result of their more intricate memory cell structure. 

Models like Bi-RNNs, Bi-LSTMs, and Bi-GRUs 

improve upon these structures by analyzing 

sequences in both forward and backward 

directions. These models perform better in tasks 

requiring a deep comprehension of context, such 

sentiment analysis, because of their ability to 

collect context from both past and future states 

within the sequence due to their bidirectional 

processing (Schuster & Paliwal, 1997). Studies has 

demonstrated that Bi-LSTMs and Bi-GRUs perform 

well in sentiment analysis tasks. In the case of 

sentiment classification within the self-driving car 

dataset, Pandya, and Thakkar, (2024) discovered 

that Bi-LSTMs and Bi-GRUs exhibit superior 

performance.  Their research highlights the 

effectiveness of bidirectional models in handling 

the contextual dependencies present in short and 

noisy text data, which is characteristic of self-

driving car communication. 

Even with these contributions, there is a clear 

lack in the research when it comes to a thorough 

analysis of deep learning models on various 

diverse datasets. Many studies typically 

concentrate on just one kind of dataset or a limited 

selection of datasets, which hinders the 

applicability of their conclusions. 

3.  Description of deep learning models 

Deep learning models are developed using 

neural network architectures, to process massive 

amounts of data and perform highly complex 

calculations that are inspired by the human brain.   

In recent years, numerous deep learning models 

have been examined and analyzed. Typically, the 

term "deep" refers to the number of hidden layers 

present in a neural network. Deep learning models 

processes input through several layers, each of 

which generally extracts features and passes 

information to the following layer and may contain 

hundreds, thousands of hidden layers (LeCun et 

al., 2015).  

In this section, a brief description is provided 

for a few of the most well-known models, such as 

Recurrent Neural Network (RNN), Long Short-

Term Memory networks (LSTMs), Gated Recurrent 

Unit (GRU) networks, and their bidirectional 

variants.  

3.1. Recurrent neural networks (RNNs) 

Recurrent Neural Networks (RNNs) are a type 

of artificial neural network made for processing 

data sequences (Park et al., 2020). RNNs are named 

because with the results based on previous 

computations, they properly execute the same task 

for each element in the sequence. As a data text, 

audio, video, and other data types, including time 

series, are all acceptable. 

The network computes a weighted sum of the 

current input and the previous hidden state at each 

time step by using shared weights to analyze input 
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data in a single time step. By passing the weighted 

sum through an activation function, the current 

hidden state is obtained. 

Recurrent Neural Networks use 

backpropagation through time (BPTT) during 

training (Ahmad et al., 2004). This involves 

computing gradients to update the network's 

parameters, and minimizing a loss function allows 

the model to learn from data. 
ℎ<𝑡> = 𝑔1(𝑊ℎℎ<𝑡−1> + 𝑊𝑥𝑥<𝑡> + 𝑏ℎ)     (1) 

�̂�<𝑡> = 𝑔2(𝑊𝑦ℎ<𝑡> + 𝑏𝑦)                 (2) 

In Eqs. (1)-(2), x<t>and ŷ<t>  are the input and 

output at time step t, h<t−1> represent the hidden 

state from the previous time step, and Wx , Wh , and 

Wy  are weight matrices for input, hidden state, and 

output. bh  and by  are bias terms for the hidden 

state, and g1 and g2 represent activation functions 

(Li et al., 2018).  

A basic RNN is defined by these equations, in 

which the input and the previous hidden state are 

used to update the hidden state at each time step. 

Based on input and output quantities, there are 

four main types of RNN architectures:                              

One-to-one: are the most basic type of RNNs. 

Image classification is an example of one-to-one 

RNNs. One-to-many: generates a sequence of 

outputs from a single input. This architecture can 

be used for in music generation and image 

captioning. Many-to-one: uses a given set of inputs 

to produce a single output. This type of RNNs is 

frequently observed in tasks such as sentiment 

analysis (Dadoun & Troncy, 2020). Many-to-many: 

generates a set of outputs after receiving a set of 

inputs. Machine translation is an example of this 

type of RNN. 

However, RNNs have a difficulty with 

vanishing gradients and are unable to retain long-

term information. There are several approaches to 

solving this issue. Two widely used and effective 

variants of advanced RNN like Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) 

are among the popular approaches. 

3.2. Long short-term memory  

In contrast to a typical RNN, which has a 

straightforward structure of input, hidden state, 

and output, an LSTM has a more complicated 

structure with additional memory cells and gates 

that allow it to selectively remember or forget 

information from past time steps (Smagulova & 

James, 2019). The LSTM has become very popular 

for a variety of problems requiring sequence 

modeling and natural language processing. This 

architecture presents a memory cell, which gives 

the network the capacity to store and retrieve data 

over long sequences, making it easier to gather 

important contextual data (Alguliyev, Aliguliyev, 

& Abdullayeva, 2019). 

The four essential components of an LSTM 

network are the forget gate, input gate, output gate, 

and cell state (Gers et al., 2000). 

The input gate (𝑖<𝑡>) - allows us to update the 

cell state. This gate determines which input values 

should be added to the cell state. 

Forget gate ( 𝑓<𝑡>) - which data from the 

previous cell state should be kept and which 

should be forgotten is determined by the forget 

gate. The output values range from 0 to 1. If the 

value close to zero, it represents forgetting, and if it 

close to one, it represents retaining. 

The cell state (𝑐<𝑡>) - is important for passing 

information through different time steps. With 

every new input, the cell state is updated, allowing 

the network to remember important information 

and forget irrelevant details. 

The output gate (𝑜<𝑡>) - chooses which part of 

the updated cell state will be used as the output for 

the current time step.  
 

𝑖<𝑡> =𝜎(𝑊𝑖ℎ
<𝑡−1> + 𝑊𝑖x

<t> + 𝑏𝑖),        (3) 

𝑓<𝑡> =𝜎(𝑊𝑓ℎ<𝑡−1> + 𝑊𝑓x<t> + 𝑏𝑓),        (4) 

𝑜<𝑡> =𝜎(𝑊𝑜ℎ<𝑡−1> + 𝑊𝑜x<t> + 𝑏𝑜),        (5) 

𝑔<𝑡> = tanh(𝑊𝑔ℎ<𝑡−1> + 𝑊𝑔x<t> + 𝑏𝑔),       (6) 

𝑐<𝑡> = 𝑓<𝑡>⨀𝑐<𝑡−1> + 𝑖<𝑡>⨀𝑔<𝑡>,        (7) 

ℎ<𝑡> = 𝑜<𝑡>⨀tanh (𝑐<𝑡>),                (8) 
 

In Eqs. (3)-(8), σ represents the sigmoid 

activation function, x<t>  is the input at time t, 

ℎ<𝑡−1> is the previous hidden state, 𝑔𝑡  represents 

candidate for cell state at timestamp(t), 

𝑊𝑖 , 𝑊𝑓 , 𝑊𝑜 , 𝑊𝑔 are weights for the respective gate 

neurons, 𝑏𝑖 , 𝑏𝑓 , 𝑏0, 𝑏𝑔  are biases for the respective 

gates, ⨀  denotes element-wise multiplication 

(Shiri et al., 2023a). 

3.3. Gated recurrent unit  

One special development in the field of 

recurrent neural network architectures is the GRU, 

aiming to overcome essential limitations associated 

with traditional RNNs. However, compared to 

LSTM, GRU has a simpler architecture. 

GRU were proposed for two main reasons: 

1) to solve the problem of vanishing gradients  

2) to determine long-range dependencies in 

data. 

The GRU architecture consists of the following 

components (Dey & Salem, 2017): 
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Update gate (𝑢<𝑡>) - This gate determines how 

much of the previous information should be carried 

forward into the future. 

Reset gate (𝑟<𝑡>) - The model uses a reset gate to 

determine what amount of the previous 

information should be discarded.   

 𝑢<𝑡> = 𝜎(𝑊𝑢ℎ<𝑡−1> + 𝑊𝑢𝑥<𝑡> + 𝑏𝑢)          (9) 

 𝑟<𝑡> =  𝜎(𝑊𝑟ℎ<𝑡−1> + 𝑊𝑟𝑥<𝑡> + 𝑏𝑟)        (10) 

 ℎ′<𝑡>
=  𝑡𝑎𝑛ℎ(𝑊ℎ(𝑟<𝑡>⨀ℎ<𝑡−1>) + 𝑊ℎ𝑥<𝑡> + 𝑏ℎ)   (11) 

 ℎ<𝑡> = (1 − 𝑢<𝑡>)⨀ℎ<𝑡−1> + 𝑢<𝑡>⨀ℎ′<𝑡>
    (12) 

 �̂�<𝑡> = 𝑔(𝑊𝑦ℎ<𝑡>+𝑏𝑦)               (13) 

In Eqs. (9)-(13), σ represents the sigmoid 

activation function, 𝑥<𝑡>  is current input at time 

step t, ℎ<𝑡−1> is a previous hidden state at time step 

t-1,  ℎ′<𝑡>  is a candidate hidden state, ℎ<𝑡>  is an 

updated hidden state at time step t, 

𝑊𝑢 , 𝑊𝑟 , 𝑊ℎ, 𝑊𝑦 are weights for the update gate, reset 

gate, candidate hidden state, and output 

prediction, 𝑏𝑢 , 𝑏𝑟 , 𝑏ℎ , 𝑏𝑦   are bias terms for the 

update gate, reset gate, candidate hidden state, and 

output prediction. 𝑔  is an activation function for 

the output prediction, �̂�<𝑡> is an output prediction 

at time step 𝑡 (Yin et al. , 2017).  

3.4. Bidirectional RNNs  

In contrast to traditional RNNs, which analyze 

sequences from past to future, Bidirectional RNNs 

process input information in two directions at the 

same time: forward and backward order (Schuster 

& Paliwal, 1997). One for processing the sequence 

from beginning to end and another for processing 

the sequence from end to beginning (Berglund et 

al., 2015). The network's capability to capture 

dependencies in both directions results in a more 

thorough comprehension of data. This represents 

the fundamental characteristic of a Bidirectional 

RNN architecture. For tasks like speech 

recognition, natural language processing, and 

other data analytic applications, the Bidirectional 

RNN is especially helpful. 

In the context of bidirectional RNNs, assuming 

𝑥𝑡 as the input at time step 𝑡, hidden state as ℎ𝑡   at 

time step 𝑡 and the output at time step 𝑡 as 𝑦�̂� . 
The equations for Bidirectional RNN can be 

represented as follows (Berglund et al., 2015). 

ℎ𝑡
𝑓

= 𝑡𝑎𝑛ℎ(𝑊ℎ
𝑓

ℎ𝑡−1
𝑓

+ 𝑊𝑥
𝑓

𝑥𝑡 + 𝑏ℎ
𝑓

),       (14) 

ℎ𝑡
𝑏 = 𝑡𝑎𝑛ℎ(𝑊ℎ

𝑏ℎ𝑡+1
𝑏 + 𝑊𝑥

𝑏𝑥𝑡 + 𝑏ℎ
𝑏)        (15) 

𝑦�̂� = 𝜑(𝑊𝑦
𝑓

ℎ𝑡
𝑓

+ 𝑊𝑦
𝑏ℎ𝑡

𝑏 + 𝑏𝑦),             (16) 

𝜑 is the softmax activation function, 𝑏ℎ
𝑓

, 𝑏ℎ
𝑏 and 𝑏𝑦 

are the hidden layer and output bias vectors. 𝑊𝑦
𝑓, 

𝑊𝑦
𝑏 , 𝑊ℎ

𝑓
, 𝑊ℎ

𝑏 , 𝑊𝑥
𝑓

 , 𝑊𝑥
𝑏 are the weight matrices of 

output layer, hidden layer and input. The forward 

and backward directions have separate non-tied 

weights and hidden activations, and are denoted 

by the superscript f and b for forward and 

backward. 

3.5. Bidirectional LSTM  

Bidirectional Long Short-Term Memory is a 

type of extension of the LSTM architecture. It's 

widely used in natural language processing (NLP) 

tasks. In a bidirectional LSTM, the input sequence 

is processed forward and backward directions, 

while a standard LSTM processes input sequences 

only in the forward direction. Bidirectional LSTMs 

gather deeper insights of the sequence's flow by 

simultaneously accessing information from the 

past and the future, the ability to detect long-range 

dependencies may be greatly improved by this 

increased context awareness, which could result in 

better performance on a variety of tasks (Imrana et 

al., 2021).  

Essential parts of a Bidirectional LSTM are two 

sets of hidden states: While one captures 

information from the past, the other captures it 

from the future. The output sequence 𝑦�̂�  for each 

time step is produced by combining these two sets 

of hidden states, thus  (Graves et al., 2013; Mousa 

& Schuller, 2017): 

ℎ𝑡
𝑓

= ℋ(𝑊ℎ
𝑓

ℎ𝑡−1
𝑓

+ 𝑊𝑥
𝑓

𝑥𝑡 + 𝑏ℎ
𝑓

),      (17) 

ℎ𝑡
𝑏 = ℋ(𝑊ℎ

𝑏ℎ𝑡+1
𝑏 + 𝑊𝑥

𝑏𝑥𝑡 + 𝑏ℎ
𝑏)      (18) 

𝑦�̂� = 𝑊𝑦
𝑓

ℎ𝑡
𝑓

+ 𝑊𝑦
𝑏ℎ𝑡

𝑏 + 𝑏𝑦 ,           (19) 

ℋ is an element-wise application of the sigmoid 

function. 

Bidirectional LSTM is a popular option, for 

many NLP tasks, including sentiment analysis, text 

classification, machine translation, and speech 

recognition. 

3.6. Bidirectional GRU  

Like Bidirectional RNNs and Bidirectional LSTM, 

Bidirectional GRU processes information in forward 

and backward order. As a result, Bidirectional GRU 

is able to extract contextual information from both 

directions of the input sequence (Lynn et al., 2019). 

This leads to a deeper comprehension of the 

information. If update gate  𝑧𝑡
𝑓 , reset gate 𝑟𝑡

𝑓
,  

ℎ̃𝑡
𝑓

 candidate hidden state, the hidden state ℎ𝑡
𝑓 at time 

step t, so forward GRU equations can be described as 

follows (Liu et al., 2020): 

𝑧𝑡
𝑓

= 𝜎(𝑊𝑧
𝑓

𝑥𝑡 + 𝑊𝑧
𝑓

ℎ𝑡−1
𝑓

+ 𝑏𝑧
𝑓

),          (20)  
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𝑟𝑡
𝑓

= 𝜎(𝑊𝑟
𝑓

𝑥𝑡 + 𝑊𝑟
𝑓

ℎ𝑡−1
𝑓

+ 𝑏𝑟
𝑓

),         (21) 

ℎ̃𝑡
𝑓

= tanh (𝑊ℎ
𝑓

𝑥𝑡 + 𝑊ℎ
𝑓

(𝑟𝑡
𝑓

⊙ ℎ𝑡−1
𝑓

) + 𝑏ℎ
𝑓

),  (22) 

ℎ𝑡
𝑓

= (1 − 𝑧𝑡
𝑓

) ⊙ ℎ̃𝑡
𝑓

+ 𝑧𝑡
𝑓

⊙ ℎ𝑡−1
𝑓

        (23) 

σ represents the sigmoid activation function, 𝑥𝑡  is 

the input at time step t, 𝑊𝑧
𝑓

, 𝑊𝑟
𝑓

 and 𝑊ℎ
𝑓

 are weight 

matrices. 𝑏𝑧
𝑓

, 𝑏𝑟
𝑓

, 𝑏ℎ
𝑓 are bias terms. 

The reversed input is sent into the backward 

GRU. It executes a sequence of calculations at time 

step t, much like the forward GRU, and generates a 

hidden state ℎ𝑡
𝑏 , which is combined with ℎ𝑡

𝑓  to 

create the final output. 

4. Experimental results 

Three datasets were used in our experimental 

research: imdb reviews, Twitter Sentiment Dataset, 

and Emotions dataset for NLP. The aim of the 

study was to compare different deep learning 

models. Six various models were analyzed: RNN, 

LSTM, GRU, Bidirectional RNN, Bidirectional 

LSTM, and Bidirectional GRU. Our goal was to 

evaluate these models' performance. 

The imdb_reviews  is a large dataset offers a set 

of movie reviews grouped into positive or negative 

sentiments. The dataset is split into training and 

testing sets, each containing 25,000 reviews (Maas 

et al., 2011). Training samples contains 12,500 

positive and 12,500 negative samples and testing 

sets likely follows the same distribution (positive: 

12,500, negative: 12,500) together constitute the 

total of 50,000 reviews in the dataset. 

Twitter Sentiment dataset provides tweets 

categorized into three sentiments (positive: 72250, 

negative: 35510, and neutral: 55213) for sentiment 

classification purposes. 162,980 unique tweets, 

providing a rich resource for sentiment 

classification (Hussein, 2021). 

Emotions dataset for NLP is a collection of 

documents with their associated emotions, sourced 

from Kaggle. Anger (2159), fear (1937), joy (5362), 

love (1304), sadness (4666), and surprise (572) are 

the six fundamental emotions represented in this 

collection. Dataset comprises 15,999 samples 

(Saravia et al, 2018). 

The models were trained for a range of epochs  

(5-20) and a unit size of 64 for each dataset. Based 

on this evaluation, 8 epochs emerged as the optimal 

point where the models achieved good 

performance (high validation accuracy with 

minimal overfitting) for all three datasets. 

To analyze these models' performance, cross-

entropy loss and accuracy assessment metrics were 

used. The Cross-Entropy Loss is a popular loss 

function for sentiment analysis applications. This 

loss function is very useful for classification tasks, 

like sentiment analysis, in which the objective is to 

divide text into predetermined groups. Cross-

entropy loss is given by (Connor et al., 2024): 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑘) log 𝑞(𝑘)

𝑘𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠

          (24) 

Where 𝑝(𝑘)  is the true probability distribution 

(one-hot) and 𝑞(𝑘) is the predicted probability 

distribution. 

Represented accuracy assessment metric in Eq. (25) 

(Gaafar et al., 2022; Shiri et al., 2023b):      

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (25) 

here, 𝑇𝑃 – True Positives, 𝐹𝑁 – False Negatives, 𝐹𝑃 

– False Positives, 𝑇𝑁 – True Negatives. 

Through conducting a comparative analysis using 

accuracy metric on deep learning models, valuable 

insights can be obtained concerning the 

performance and effectiveness of these models in 

sentiment analysis. 

In this study, six various deep learning models 

were applied on datasets for sentiment 

categorization. The results of the comparison study 

are presented on deep learning models, including 

RNN, LSTM and GRU, as well as their bidirectional 

variants using datasets specifically designed for 

sentiment analysis purposes. Six deep learning 

models were evaluated using three different 

datasets. 

Table 1.Accuracy results of deep learning models  

Model IMDB Twitter Emotions 

RNN 0.6131 0.9279 0.9901 

LSTM 0.9750 0.9942 0.9945 

GRU 0.9898 0.9890 0.9968 

Bi RNN 0.6955 0.9282 0.9970 

Bi LSTM 0.9861 0.9954 0.9966 

Bi GRU 0.9894 0.9889 0.9965 

Dataset-based analysis: Imdb review Dataset: 

RNN has the lowest accuracy (0.6131), indicating 

poor performance for sentiment analysis. 

Bidirectional RNN model performs better than 

RNN model but still relatively low at 0.6955. They 

perform similarly. GRU performs better than RNN 

and LSTM. With an accuracy of 0.9894, Bi GRU 

performs much better than all other models. Bi 
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LSTM with an accuracy of 0.9861, demonstrate 

high result. 

Twitter Sentiment Dataset: LSTM performs 

noticeably better than RNN and GRU. The highest 

performing models are LSTM and Bi LSTM, with 

accuracies of 0.9942 and 0.9954. With accuracies of 

0.9379 and 0.9282, RNN and Bi RNN both show 

lowest results. 

Emotions Dataset: A relatively small number 

separates RNN from other models. While LSTM 

performs very well, GRU is much better, with a 

0.9968 accuracy. All bidirectional models perform 

excellently. Bi RNN has the highest accuracy result. 

Model-based analysis: RNN: shows the lowest 

performance across all datasets, indicating that 

simple RNNs are less effective for these tasks.  

LSTM and GRU has consistent results; typically 

performs better than RNN, demonstrating 

increased effectiveness and capacity for learning. 

Bi RNN: while it performs moderately on other 

datasets, Bi RNN has best results on the Emotions 

dataset. 

Bi LSTM and Bi GRU: are the most reliable 

models for a range of applications since they 

consistently perform the best across all datasets. 

Bidirectional models perform better on all 

datasets than their unidirectional equivalents. This 

demonstrates the benefit of obtaining context from 

sequences that are both past and future. 

Unidirectional models typically perform worse; 

GRU and LSTM outperforms RNN in most cases. 

Loss and accuracy graphs were used to analyze 

these models’ performances. These graphs offer 

insights into the models’ learning process from  the 

data. The x-axis is labeled "Epochs" and refers to 

the number of times the training data is passed 

through the neural network. The y-axis is labeled 

‘Loss’ and ‘Accuracy’ which refers to how well the 

model is performing on a specific task. Figures 1 

and 2 visually illustrate the changes in loss and 

accuracy values during the training of deep 

learning models on imdb_reviews dataset. Every 

graph presents a plot with a count of epochs on the 

x-axis and losses or accuracy for each epoch on the 

y-axis. 

  

(a) (b) 

Fig. 1. Performance evaluation of deep learning models on the imdb_reviews dataset: (a) Loss and (b) Accuracy 

 

It is possible to make a comprehensive analysis 

of the models' performance on the imdb_reviews 

dataset based on the provided graphs.  

Lower loss and highest accuracy indicates better 

performance. Overall, the performance of all the 

models improves as the number of epochs increases, 

which means the models, are learning from the 

training data. RNN and bidirectional RNN are the 

least effective models, with accuracy and loss 

improving slowly. Compared to RNN and LSTM, 

GRU is more efficient, with GRU showing a faster 

learning rate.  Bidirectional LSTM and GRU models 

perform better in both loss reduction and accuracy 

increase, making them the best options for the IMDB 

dataset. While unidirectional GRU is a better choice 

than RNN and LSTM, it is still not as effective as 

bidirectional models. For this assignment, RNN 

model performs the worst, which struggles to 

significantly decrease loss and increase accuracy. 

Compared to their unidirectional counterparts, 

bidirectional model (particularly LSTM and GRU) 

converge more quickly, achieve lower loss, and 

greater accuracy faster. 

Figures 3 and 4 visually illustrate the changes in 
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loss and accuracy values during the training of 

deep learning models on Twitter Sentiment dataset. 

RNN is the least stable model, with noticeable 

differences in accuracy and loss. Bidirectional RNN 

exhibits instability even if it performs better than 

RNN. LSTM, GRU, Bidirectional LSTM, and 

Bidirectional GRU models are more stable. The 

Bidirectional variants exhibit the highest level of 

stability. Bidirectional LSTM and Bidirectional 

GRU outperform all other models, achieving the 

lowest loss and highest accuracy. While still 

performing well, LSTM and GRU lag behind their 

bidirectional counterparts. RNN and Bidirectional 

RNN perform worse than one another, with greater 

loss and less accuracy. 

 
 

(a) (b) 

Fig. 2. Performance evaluation of deep learning models on the Twitter Sentiment dataset:  

(a) Loss and (b) Accuracy 

  

(a) (b) 

Fig. 3. Performance evaluation of deep learning models on the Emotion dataset:  

(a) Loss and (b) Accuracy 

 

RNN is less suitable for this assignment 

according to these graphs. Exhibits the highest 

initial loss and the slowest decrease in loss over 

time. By the end of the 8 epochs, it still has a higher 

loss compared to other models, indicating less 

efficient learning and poor performance. While 

both LSTM and GRU exhibit notable 

advancements, GRU outperforming LSTM slightly, 

they are still not as good as their bidirectional 

counterparts. The results indicate that bidirectional 

models are the most successful in capturing 

dependencies in the dataset, as it performs best in 

terms of both accuracy and loss reduction. 

Bidirectional GRU demonstrates that it is also quite 
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successful for this kind of task, since it performs 

similarly to Bidirectional LSTM and bidirectional 

RNN. Bidirectional models—specifically, 

Bidirectional RNN and Bidirectional GRU—

perform best for the Emotion dataset in terms of 

accuracy and loss reduction. This suggests that for 

emotion detection tasks, collecting context in both 

directions is essential. 

5. Conclusion and future work 

This paper provides a thorough analysis of deep 

learning models. Several deep learning models, 

including RNN, LSTM, GRU, and their 

bidirectional variants, are covered in the article. 

Three publicly available datasets were used in the 

experiments: imdb_reviews, Twitter Sentiment, 

and Emotions. The results of our experiments 

demonstrate that best performing models are 

bidirectional LSTM and bidirectional GRU for 

achieving the highest accuracy across most 

datasets, demonstrating their exceptional capacity 

capturing and using bidirectional context. They are 

the best options for tasks that need context 

knowledge from both directions. Generally, RNN 

perform poorly, particularly on complicated 

datasets.  

Bidirectional LSTM or Bidirectional GRU models 

are recommended for practical applications due to 

their improved accuracy, if computational resources 

are limited, unidirectional GRU models can be an 

effective alternative, providing a good performance 

and efficiency. 

The achievements could be very useful many 

different industries and applications that leverage 

sentiment analysis tasks, which may include social 

media analysis, customer feedback analysis and so 

on. Regarding sentiment analysis tasks, 

achievements offer insightful information on how 

various deep learning models perform. Identifying 

which models produce the best accuracy impacts 

future study and application development. With 

the assist of these insights, researchers and 

professionals may choose and optimize deep 

learning models for sentiment analysis tasks with 

more knowledge, which will eventually result in 

more precise and efficient solutions. 
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