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 A B S T R A C T 

Forecasting non-scheduled passenger air transportation demand is essential for 

effective operational planning and decision-making. In this abstract, we explore the 

use of Gaussian Support Vector Machines (SVM) methods in forecasting non-

scheduled passenger air transportation processes. SVM is a type of supervised 

machine learning algorithm that can be applied to various domains, including non-

scheduled passenger air transportation. In classification and regression tasks, SVMs 

are considered especially useful. SVMs can be used to forecast passenger demand 

for specific routes or flights. By analysing historical data, including factors such as 

time of day, day of the week, etc., SVMs can help airlines estimate future passenger 

demand. This method is crucial for optimising ticket pricing and managing seat 

inventory. This research proposes the implementation of different Gaussian SVM 

methods for the forecasting of non-scheduled passenger air transportation. 

 

1. Introduction 

Non-scheduled air transportation is considered 

a type of commercial air transportation service. 

Unlike scheduled international air services, which 

are primarily regulated on the basis of bilateral 

agreements between states, non-scheduled 

international air services are generally authorised 

on the basis of national regulation. Although 

aviation regulators sometimes also regulate 

commercial non-transport operations (such as 

aerial crop dusting and surveying) as well as 

operations such as overflight and landing by 

private, corporate, military, and state aircraft, 

whether for transport or not, (ICAO, 2004). Non-

scheduled air services may be performed by all 

types of air carriers and may be distinguished from 

scheduled services by the following characteristics: 

They are usually operated on: 

 According to the charter agreement, 

several lessees can use the capacity of the 

aircraft on the relevant route. 

 It is not subject to certain public service 

obligations imposed on scheduled air 

carriers, regardless of the load factor. 

 with the financial risk of an underutilised 

payload being assumed by the charterer 

rather than the aircraft operator; 

 In many cases, the aircraft's commercial 

capacity is sold by the carrier to tour 

operators, freight forwarders, or other 

entities. For this reason, the airline does not 
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exercise any direct control over retail 

prices. 

Overall, non-scheduled air transportation offers 

flexibility, convenience, and customisation for both 

passengers and cargo, catering to specific needs 

and preferences outside the realm of traditional 

commercial aviation. (ICAO, 2004). 

Forecasting methods play a crucial role in the 

air transportation industry by providing insights 

into future demand, operational requirements, and 

market trends. Forecasting helps airlines, airports, 

and aviation authorities estimate future passenger 

demand. This is essential for optimising route 

planning, scheduling flights, and determining the 

need for infrastructure upgrades. Nowadays, 

machine learning algorithms are used for 

classification and regression tasks. In the context of 

air transportation, SVMs can be applied in various 

ways for tasks such as forecasting, classification, 

and optimisation.  

2. Related work 

In the context of air transportation, SVMs can be 

applied in various ways for tasks such as 

forecasting, classification, and optimization. In 

addition to the research conducted in this field, the 

SVM models also provide effective forecasting 

results in the air transportation field, as in Heng et 

al. (2009) and Shabri (2015). 

Huang, Kecman, and Kopriva (2006) proposed 

an approach based on kernel-based algorithms for 

mining large data sets. 

Platt (1999) proposed a fast algorithm for 

training support vector machines. In Fan et al. 

(2005) and in Fan et al. (2006), working set selection 

using second order information for training 

support vector machines and SMO-type 

decomposition methods for support vector 

machines were proposed. 

Suykens and Vandewalle (1999) proposed least 

squares support vector machine classifiers, which 

solve a system of equations instead of a quadratic 

programming (QP) problem and lead to optimal 

results in calculations. 

In Xie et al. (2013), hybrid approaches based on 

the LSSVR model for container throughput 

forecasting were proposed, and this research has 

brought effective solutions to cargo transportation.  

It is clear from the research conducted on air 

transportation forecasting that the applied 

methods are based on regular air transportation. 

Research on non-scheduled passenger air 

transportation forecasting is scarce. For this reason, 

this research proposes different Gaussian kernel 

functions for forecasting passenger demand in 

non-scheduled air transportation. Unlike regular 

passenger air transportation, the time sequence of 

non-scheduled passenger air transportation varies 

within a certain limited time, although it is a 

random process. Regardless of how it changes in 

this limited area, a forecasting model for a specific 

airport can be built based on SVM methods. 

3. Proposed approach 

Non-scheduled air transportation is formed 

depending on the technical equipment of the existing 

aircraft fleet, the economic situation in the country, 

the demographic indicators of the population, the 

characteristics of the environment and many other 

factors. For this reason, the basic model of the process 

of non-scheduled air transportation should be created 

individually for each specific case (in our case, 

airports). In our case, different Gaussian kernel 

functions were used to define the base model. It 

should be noted that during the construction of the 

models, the time of flights and the number of 

passengers are taken as dependent and independent 

variables, respectively. Data for 12 months of 2022 

and 9 months of 2023 were included in the study. 

Based on the data for 2022, the base model was 

selected, and based on the data for 2023, the kernel 

function (Medium Gaussian SVM) that provided the 

most optimal results was selected. Forecasting results 

for November, December 2023, January, February, 

and March 2024 are given based on the selected basis 

and optimal kernel function. 

3.1.  Selection of a base model based on different 

Gaussian kernel functions 

Let's denote the kernel function by G to start 

calculations. It should be noted that, depending on 

the data involved in the study, different kernel 

functions are applied. In this research, we propose 

the selection and comparison of three Gaussian 

kernel functions for SVM methods. The 𝐺(𝑥𝑖 , 𝑥𝑗)  is 

considered the kernel function. There is a class of 

capacities 𝐺(𝑥𝑖 , 𝑥𝑗) associated with the 

accompanying property. (Lin, 2021) This class of 

capacity incorporates the following features: 

 Gaussian function (radial basis) 

𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) = 𝑒𝑥𝑝 (−𝑟‖𝑥𝑖 − 𝑥𝑗‖
2

)   (1) 

Here, 𝑟 is a coefficient and its value is equal to 𝑟 =
1

2𝜎2. 

Where 𝜎 represents the width of the kernel. If the 

parameter 𝜎 is close to zero, in this case, the SVM 
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is overfitting. If 𝜎 is large, it may lead to 

underfitting, resulting in the inability to classify all 

categories. Thus, parameter selection is crucial, and 

a suitable value must be selected for the kernel 

width. In order to achieve nonlinear separation in 

the kernel space, the SVM Gaussian kernel maps 

the data from the feature space to the higher-

dimensional kernel space. According to our 

proposed approach, we can easily say that different 

Gaussian kernel functions can achieve different 

levels of classification accuracy. In the analysis, the 

Gaussian kernel function parameter G in Equation 

(1) is adjusted to different values according to the 

following assumptions: 

𝑟𝑓𝐺 = √𝑝 4⁄   for fine Gaussian, 

               𝑟𝑚𝐺 = √𝑝  for medium Gaussian, and 

               𝑟𝑐𝐺 = 4√𝑝      for coarse Gaussian, 

where p is the number of features or the dimension 

size of  in Equation (1). In terms of forecasting non-

scheduled passenger air transportation, we can 

note that medium Gaussian has the ability to 

classify more complex data, coarse Gaussian has 

the ability to classify medium complexity data, and 

fine Gaussian has the ability to classify low 

complexity data. Thus, this research leads to the 

non-scheduled passenger air transportation 

forecasting results of the classification of these 

three Gaussian kernel functions and discusses their 

classification accuracy rates. 

3.2. Statistical analysis of the obtained results 

The root mean square error (RMSE) is  

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂�−𝑦𝑖)2

𝑛

𝑛
𝑖=1                     (2) 

Here, 

 𝑦�̂�, 𝑦2̂,….. 𝑦�̂� are predicted values; 𝑦1, 𝑦2,…., 𝑦𝑛 are 

observed values; and 𝑛 is the number of 

observations. 

The mean squared error (MSE) is 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦�̂� − 𝑦𝑖)2𝑛

𝑖=1                   (3) 

The average sum of all absolute errors (MAE) is  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖|𝑛

𝑖=1                     (4) 

R-squared (R2) is a statistical measure that reflects 

the ratio of variance for the independent variable 

and the dependent variable (for which the 

forecasting results are determined) in 

computational models. 

𝑅2 = 1 −
∑(𝑦�̂�−𝑦𝑖)2

∑(𝑦𝑖−�̅�)2                    (5) 

Here �̅� is the mean of the y value.  

4. Experimental results 

 

Fig. 1. Monthly statistics of non-scheduled 

passenger air transportation at Heydar Aliyev 

International Airport for 2022 

In Fig. 1, SVM models with different Gaussian 

kernel functions are built based on monthly data 

for 2022. In formula (1), fine, medium, and coarse 

Gaussian SVM models are built. The results are 

plotted in Fig. 2-10. As an observation, for all three 

models, the actuals and predictors based on the 

monitoring points are given first. Then, one can 

discover how effective the relationship between the 

actual data and the forecasting data is. So, the 

points close to the straight line are accurately 

determined. The last step is the fact of errors 

between the obtained result and the outputs. As 

observed, points close to 0 are considered more 

effective; that is, the error is at a lower level. As it 

moves away from 0, the error increases, which 

affects the accuracy of the forecast. (Fig. 4), (Fig. 7), 

and (Fig. 10). 

4.1. Fine Gaussian SVM model and basic indicators 

 

Fig. 2. Fine Gaussian SVM (Response-record 

number) 
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Fig. 3. Fine Gaussian SVM (observations-perfect 

prediction) 

  

Fig. 4. Fine Gaussian SVM (residuals) 

𝑦 = −495.8𝑧7 − 30.57𝑧6 + 2022.7𝑧5 + 118.4𝑧4 −

2085.2𝑧3 + 9.25𝑧2 + 452.04𝑧 + 488.7      (Fig. 2)       (6) 

𝑧 =
(𝑥−𝜇)

𝜎
                    (7) 

 here, 𝜇- the mathematical expectation, 𝜎- is mean-

square bias. 

where z is centred and scaled: 

𝜇 = 6.5 , 𝜎 = 3.6056 (Fig. 2)   

𝑦 = −325.37𝑧7 + 823.97𝑧6 + 539.57𝑧5 − 1658.4𝑧4 −

230.66𝑧3 + 722𝑧2 − 103.13𝑧 + 481.8 (Fig. 3)             (8) 

where z is centred and scaled:   

𝜇 = 586.42 , 𝜎 = 278.81 (Fig. 3) 

𝑦 = 325.37𝑧7 − 823.97𝑧6 − 539.5𝑧5 + 1658.4𝑧4 +

230.6𝑧3 − 722𝑧2 + 381.9𝑧 + 104.6 (Fig. 3)                 (9)                         

where z is centred and scaled:  

𝜇 = 586.42 , 𝜎 = 278.81 (Fig. 4)   

4.2.  Medium Gaussian SVM model and basic 

indicators 

Fig. 5. Medium Gaussian SVM (Response-record 

number) 

Fig. 6. Medium Gaussian SVM (observations-

perfect prediction) 

 

Fig. 7. Medium Gaussian SVM (residuals) 

𝑦 = 217.25𝑧3 + 125.8𝑧2 − 186𝑧 + 471            (10) 

where z is centred and scaled: 

𝜇 = 6.5 , 𝜎 = 3.6056 (Fig. 5) 
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𝑦 = −102.51𝑧4 + 302.3𝑧3 − 12.237𝑧2 − 339.66𝑧 +

525.66  (Fig. 6)                    (11) 

where z is centred and scaled: 

𝜇 = 586.42 , 𝜎 = 278.81 (Fig. 6) 

𝑦 = 105.92𝑧4 − 309.43𝑧3 + 7.8659𝑧2 + 624.47𝑧 +

62.346  (Fig. 7)                      (12) 

𝜇 = 586.42 , 𝜎 = 278.81 (Fig. 7) 

4.3. Coarse Gaussian SVM model and basic indicators 

Fig. 8. Coarse Gaussian SVM (Response-record 

number)

Fig. 9. Coarse Gaussian SVM (observations-perfect 

prediction) 

 

Fig. 10. Coarse Gaussian SVM (residuals) 

𝑦 = 217.25𝑧3 + 125.8𝑧2 − 186𝑧 + 471     (13) 

where z is centred and scaled: 

𝜇 = 6.5 , 𝜎 = 3.6056  (Fig. 8) 

𝑦 = −76.193𝑧4 + 181.8𝑧3 + 61.919𝑧2 − 174.27𝑧 +

483.33   (Fig. 9)             (14) 

where z is centred and scaled: 

𝜇 = 586.42 , 𝜎 = 278.81  (Fig. 9) 

𝑦 = 76.193𝑧4 + 181.8𝑧3 − 61.919𝑧2 + 453.08𝑧 + 103.08 

(Fig. 10)               (15) 

where z is centred and scaled: 

𝜇 = 586.42 , 𝜎 = 278.81 (Fig. 10) 

The classification learner toolbox of Matlab has 

been used to design our SVM-based classifier, with 

training and forecasting steps. 

Furthermore, the resulting SVM model of the 

fine Gaussian kernel function is presented in 

Fig. 2-4. From these figures, we show that we 

have 12 observations. Additionally, equations and 

coefficients are defined in (6), (8), and (9). From the 

obtained results, the error rate for forecasting non-

scheduled passenger air transportation using the 

Fine Gaussian SVM model is 26%, hence the 

necessity to test another kernel function (Table 1). 

Table 1. Resulting trained models 

 

Next, the resulting SVM model of the medium 

Gaussian kernel function is presented in Fig. 5-7. 

From these figures, we show that we have 12 

observations. Additionally, equations and 

coefficients are defined in (10), (11), and (12). From 

the obtained results, the error rate for forecasting 

non-scheduled passenger air transportation using 

the Medium Gaussian SVM model is 16%, hence the 

necessity to test another kernel function. (Table 1) 

Finally, the resulting SVM model of the coarse 

Gaussian kernel function is presented in Fig. 8-10. 

 Fine 

Gaussian 

SVM 

Medium 

Gaussian 

SVM 

Coarse 

Gaussian 

SVM 

RMSE  238.812177 189.983185 216.7506 

MSE  57031.256 36093.6106 46980.84 

MAE    202.474872 146.322682 186.6744 

R-Squared  0.747722 0.84739815 0.985924 
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From these figures, we show that we have 12 

observations. Additionally, equations and 

coefficients are defined in (13), (14), and (15). From 

the obtained results, the error rate for forecasting 

non-scheduled passenger air transportation using 

the coarse Gaussian SVM model is 2%. We note 

that coarse Gaussian SVM gives the best results 

compared to fine Gaussian SVM (Table 1). 

As can be seen from Table 2,3 and 4, the 

variation of the absolute error in the Fine Gaussian 

SVM model is relatively higher than in other 

models. The variation interval of the relative errors 

of the models is more satisfactory for the fine 

Gaussian and medium Gaussian SVM models.  

The correlation coefficients R and standard  error 

of the models were calculated to determine which 

of these models (fine and medium) to use in future 

forecasting calculations. (Table 1).  

Table 2. Dynamics of absolute and relative errors 

in a fine Gaussian SVM 
 

 

Table 3. Dynamics of absolute and relative errors 

in a medium Gaussian SVM 

 

 

Table 4. Dynamics of absolute and relative errors 

in a coarse Gaussian SVM 

 

Consequently, we can conclude that the 

medium Gaussian kernel function has the best 

classification accuracy compared to the fine and 

coarse kernels.  The obtained results show that the 

best model in terms of standard error is the 

medium-gaussian SVM model. 
The forecasting results obtained based on the 

Medium Gaussian SVM model, which provides the 

most optimal results, are listed in Table 5. 

Table 5. Forecasting results of non-scheduled 

passenger air transportation based on the Medium-

Gaussian SVM model 

Months/year The number of passengers 

Nov-2023 557 

Dec-2023 535 

Jan-2024 537 

Feb-2024 541 

Mar-2024 525 

5. Conclusions and future works 

As a result of the conducted research, a basic 

model for non-scheduled passenger air 

transportation was established at Heydar Aliyev 

International Airport. According to the results of 

calculations based on different Gaussian kernel 

functions, the medium Gaussian SVM model 

provided effective results. With the application of 

the model, an effective forecasting model for non-

scheduled passenger air transportation was 

established. Forecasting results were obtained 

based on the mentioned model. In future works, 

this model can serve as a basis for applying neural 

network models by adaptively changing the 

coefficients as the actual values are known for each 

year.  

Month/ 

Year 

Actual 

data 

Fine 

Gaussian 

SVM 

Absolute 

error 

Relativ

e error 

Jan-2023 770 592.6986 177.3014 23.02616 

Feb-2023 710 532.1904 177.8096 25.0436 

Mar-2023 886 530.6827 355.3173 40.10353 

Apr-2023 855 530.6795 324.3205 37.93222 

May-2023 932 530.6795 401.3205 43.06013 

Jun-2023 370 530.6795 160.6795 43.4269 

Jul-2023 495 530.6795 35.67954 7.207988 

Aug-2023 623 530.6795 92.32046 14.81869 

Sep-2023 250 530.6795 280.6795 112.2718 

Oct-2023 550 530.6795 19.32046 3.51281 

Month/ 

Year 

Actual 

data 

Medium 

Gaussian 

SVM 

Absolut

e error 

Relative 

error 

Jan-2023 770 748.1827 21.81729 2.833414 

Feb-2023 710 717.5672 7.567168 1.065798 

Mar-2023 886 665.562 220.438 24.88013 

Apr-2023 855 614.5275 240.4725 28.12544 

May-2023 932 577.4228 354.5772 38.04476 

Jun-2023 370 555.985 185.985 50.26621 

Jul-2023 495 545.8379 50.83788 10.27028 

Aug-2023 623 541.8392 81.16078 13.02741 

Sep-2023 250 540.5147 290.5147 116.2059 

Oct-2023 550 540.1437 9.856307 1.792056 

Month/ 

Year 

Actual 

data 

Coarse 

Gaussian 

SVM 

Absolute 

error 

Relative 

error 

Jan-2023 770 608.9622 161.0378 20.91401 

Feb-2023 710 616.3133 93.68668 13.19531 

Mar-2023 886 621.6296 264.3704 29.83864 

Apr-2023 855 624.917 230.083 26.91029 

May-2023 932 626.2451 305.7549 32.80632 

Jun-2023 370 625.7401 255.7401 69.11895 

Jul-2023 495 623.5751 128.5751 25.97478 

Aug-2023 623 619.9597 3.040318 0.488012 

Sep-2023 250 615.128 365.128 146.0512 

Oct-2023 550 609.3277 59.32767 10.78685 
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