
Problems of Information Technology (2024), vol. 15, no. 1, 52-61 

 

Received 27 September 2023, Received in revised form 30 November 2023, Accepted 14 December 2023 

http://doi.org/10.25045/jpit.v15.i1.07 

2077-4001/© 2024 This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

Predicting the reliability of software systems using recurrent 

neural networks: LSTM model 
Tamilla Bayramova 

Institute of Information Technology, B. Vahabzade str., 9A, AZ1141 Baku, Azerbaijan 

toma_b66@mail.ru 

  https://orcid.org/0000-0002-8377-3572 

A R T I C L E   I N F O 

Keywords:  

 

Software Reliability Growth Models 

Recurrent neural network 

LSTM 

Deep learning 

Parametric model 

Non-parametric model 

 

 A B S T R A C T 

 

The dynamics and complexity of processes occurring in complex software systems, as well 

as the emergence of new types of malicious threats, further complicate the issues of ensuring 

software reliability. Despite the development of hundreds of models for increasing the 

reliability of software systems, this issue still remains relevant. Research shows that the use 

of neural networks in predicting the reliability of software systems allows one to obtain more 

accurate results. In this paper, to predict reliability, we used a neural network model with 

long short-term memory, which is a type of recurrent neural networks. Seven real-world 

software crash datasets were used to test the model's performance. The experiments were 

carried out in Python. Both parametric and nonparametric models were taken for 

comparison. The experimental results showed the practical significance of using the 

proposed model in predicting the reliability of software systems. 

1. Introduction 

Advances in science and technology have 

created ample opportunities for the development 

of high-performance equipment and high-quality 

software systems. However, in contrast to the rapid 

development of hardware technologies, the 

development of software technologies lags behind 

in all respects (quality, reliability, performance, 

security, etc.). As a result of errors in software 

systems, accidents can occur, ranging from minor 

inconveniences to large economic losses and 

human lives (Lai & Garg, 2020). 

Software systems have become an integral part 

of modern society. With the increase in the number 

of functions assigned to these systems, the number 

of errors and failures in these systems increases. All 

components of software systems must be 

monitored before they are presented to the user. 

Prediction and reliability assessment have become 

one of the important problems that need to be 

solved when developing software systems. It 

determines the end time of testing a software 

system, thereby saving time and budget. Reliability 

in safety-critical systems (medical equipment, 

nuclear power plants, defense and aviation 

industries, etc.) requires more accurate assessment.  

It is not possible to directly assess the reliability of 

software, and since the requirements for reliability in 

critical applications are very high, the volume of 

work performed in this area increases several times. 

To ensure the reliability of software systems, it is 

important to develop and implement effective 

methods and models that warn about and prevent 

errors, while at the same time allowing the program 

to continue functioning when these errors occur. 

Models for improving the reliability of software 

systems are divided into two groups: parametric and 

non-parametric models (Fig. 1) (Sahu et al., 2021). 

Parametric models are built based on certain 

considerations and assumptions. Traditional 

parametric models such as non-homogeneous 

Poisson process (NHPP) models have been 

successfully used in software reliability engineering. 
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However, no parametric model can accurately 

predict all cases. The importance of predicting the 

reliability of software systems has turned the 

development of more accurate and reliable methods 

and models into one of the urgent tasks. 

 

In recent years, to overcome the difficulties that 

arise in real problems in the field of modeling and 

predicting the reliability of FT, methods of machine 

learning and soft computing have been used. Modern 

and more promising methods for predicting the 

reliability of software systems, especially the intensity 

and duration of failures, are based on nonparametric 

models. Such models eliminate the main 

disadvantages of parametric models, since no 

assumptions or other restrictions are made about the 

nature of errors. These methods are based on the time 

history of failures based on historical data presented 

as time series. In recent years, various types of neural 

networks have been used for time series forecasting: 

multilayer perceptron (MLP), convolutional neural 

networks (CNN), recurrent neural networks (RNN), 

and other deep learning (DL) models. The neural 

network model requires only software failure history 

as input and predicts the timing of future failures 

more accurately than parametric models (Lakshman 

& Ramasamy, 2017; Roy et al., 2014; Musa, 2004; 

Bayramova, 2023).   

Karunaithi et al. (1991) first used a neural network 

to evaluate software reliability. To evaluate reliability, 

they used bug detection history as input and 

cumulative number of bugs detected as output. In 

their research, they used feedforward neural 

network, Jordan network and Elman network. 

Comparing the results with several statistical models, 

they showed that they obtained better results. 

Khoshgoftaar and Lenning (1995) used a neural 

network as a tool to predict the number of errors in 

programs. They presented a new approach to 

reliability modeling and experimentally proved the 

superiority of neural network models. 

In this study, a long short-term memory neural 

network model, which is a special type of recurrent 

neural networks, is used to predict the reliability of a 

software system. Scientific novelty of the article: to 

select the hyperparameters of the article, the AutoML 

hyperparameter optimization method was used. This 

model gives good results for both large and small 

data sets. Data from real software projects was used 

to train and test the model's performance, and a series 

of experiments were conducted to compare it with 

other competing approaches. 

2. Releated work 

The increasing demand for the quality of 

software systems requires the development of 

accurate modeling methods for predicting the 

reliability of software systems. Software reliability 

models are very useful for estimating the 

probability of failures in software systems. 

Cai et al. (2001) proposed a method for 

predicting software reliability based on neural 

networks. For training, they used a 

Fig. 1. Software reliability growth models   
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backpropagation algorithm. Based on the last 50 

failures, the study predicted the time of the next 

failure. Lu and Ma (2018) assessed software 

reliability using a modified Whale algorithm. The 

article proposes a three-stage model. The 

experimental results showed that the accuracy of 

the three-stage model in predicting software errors 

is higher than that of the one-stage model. 

Tian and Noor (2005) combined a neural 

network with an evolutionary algorithm to 

evaluate reliability. They applied a genetic 

algorithm to optimize the number of input and 

hidden layers. Granitto et al. (2005) showed 

through experiments that it is possible to improve 

the performance of neural network models by 

combining multiple neural networks. 

Hu et al. (2006) proposed an artificial neural 

network model to predict the reliability of current 

projects based on failures in past projects. Aljahdali 

and Buragga (2008) combined multilayer 

perceptron, radial basis function, Elman recurrent 

neural network, and fuzzy neural network models 

to predict software reliability. 

Jheng (2009) used an ensemble of neural networks 

to predict the reliability of software systems. The 

experiment was carried out on two databases and the 

result was compared with a neural network model 

and several statistical models. Experiments have 

shown that an ensemble of neural networks has better 

performance. Singh and Kumar (2010) used a 

feedforward neural network model to predict the 

reliability of a software system. 

Ramasamy et al. (2016) proposed a neural 

network-based dynamic weighted combinatorial 

model (DWCM) for software reliability prediction. 

In this model, they took three different parametric 

models as the activation function in the hidden 

layer. They applied the result to two data sets and 

compared it with the results of those statistical 

models separately. Experiments have shown that 

the neural network model gives better results. 

Munir et al. (2021) used a combination of GRU-

LSTM to predict defects. They did not choose 

historical testing data as data for the forecast, but 

identified 32 program code operator level metrics. 

Performance tests cover a variety of programs and 

sets of variants written by thousands of 

programmers. The recall, accuracy, precision, and 

F1 measurement of the GRU-LSTM-based model 

increased by 1%, 4%, 5%, and 2%, respectively. 

In (Yangzhen et al., 2017), a software reliability 

prediction model based on the long short-term 

memory network was proposed. To improve 

performance, the authors added layer normalization 

to the model. The results were compared with other 

neural network models, and the proposed approach 

showed better predictive performance. 

3. Recurrent neural networks 

Machine learning is a type of artificial 

intelligence technology that aims to develop 

methods and algorithms that make predictions or 

decisions based on data. Deep learning refers to 

machine learning techniques and consists of a 

neural network (deep neural network) consisting 

of several layers. Deep learning models can 

identify complex patterns in data, but require more 

parameters and computational resources. 

Deep learning methods are used in a number of 

areas to solve various problems (classification of 

images, video and audio data, speech recognition, 

sentiment analysis, time series forecasting, etc.). 

The main advantage of these models is the 

automatic extraction of the best features from the 

input data using a general purpose learning 

procedure (LeCun et al., 2015). The history of the 

development of deep learning models and their 

application in artificial neural networks is explored 

in detail by Schmidhuber et al. (2015).  

Time series forecasting has been the focus of 

machine learning researchers for over 40 years. In 

recent years, many experiments have proven that 

recurrent neural networks provide the best results 

in this area (Sezer et al., 2020).   

Recurrent neural networks (RNN) are a type of 

deep learning network that work better when 

analyzing time series or sequential data. It was first 

developed in 1980 for forecasting time series and 

sequential data. One of the main ideas of a 

recurrent neural network is that it can use the 

information obtained in the previous stage in the 

current task. Unlike simple feed forward neural 

networks (FNNs), RNNs have internal memory to 

process input data. The architecture of an RNN 

model consists of different numbers of layers and 

different types of blocks at each layer. The main 

difference between RNN and FNN is that each 

block receives both current and previous inputs 

simultaneously. The result also depends on 

previous data. In this way, memory is formed in 

the network (Fig. 2) (Hewamalage et al., 2021). 

The basic architecture of an RNN consists of an 

input block, an output block and hidden blocks. 

Hidden blocks perform all the calculations and 

generate the output by adjusting the weights.
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The RNN is called "recurrent" because it does 

the same thing for each element of the sequence, 

and the result depends on previous calculations. 

The network changes the weights by comparing 

the current hidden layer error with the previous 

hidden layer error.  

Recurrent neural networks use backpropagation 

through time (BPTT) as the training algorithm. 

Recurrent neural networks adjust weights using 

BPTT algorithm. The learning algorithm is used to 

correct the weights in the neural network and 

ensures that the value obtained at the network 

output is closer to the actual value. During training, 

serial data is fed into the network and the output is 

compared with the expected value. The difference 

between the received and expected output price is 

calculated using the loss function. The goal of 

training is to adjust the network weights to 

minimize this function. 

BPTT calculates the gradients of the network 

output loss function at each step as a function of 

time. The gradient is a vector used to update the 

neural network's weights (determining in which 

direction the function is incremented). Because 

gradients are propagated back in time to update 

the network's weights, updating the weights 

depends on the entire data sequence in addition to 

the input and output data. This allows RNNs to 

learn long-term dependencies and better cope with 

problems associated with data sequences. 

An optimization algorithm (SGD, RMSProp, 

ADAM) is used to adjust the weights. LSTM 

networks use various activation functions. The 

most commonly used activation functions are 

sigmoid (1), ReLU (rectified linear unit) (2), laky-

ReLU (3), hyperbolic tangent (4) and softmax (5): 
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The hyperparameters of a recurrent neural 

network determine the architecture of the network, 

and the correct choice of these parameters affects 

the performance of the network. The 

hyperparameters of the network are the number of 

hidden layers, number of epochs, activation 

functions, learning rate, batch size, iteration size, 

etc. Proper selection of these hyperparameters is a 

major challenge and ensures accurate performance 

of the model (Reimers & Gurevych, 2017).  

The main disadvantage of a recurrent neural 

network is the problem of gradient vanishing and 

exploding gradient. The vanishing gradient 

problem occurs when the strength of the gradient 

is too small because the layers cannot learn. This 

makes the learning process more difficult. An 

exploding gradient problems occurs as a result of 

the accumulation of large error gradients. This 

causes the neural network's weights to be updated 

frequently during training. As a result, the model 

cannot be trained on training data.  

4. Long Short-Term Memory 

Recurrent neural networks cannot store very large 

data vectors. To overcome this problem, Long Short-

Term Memory (LSTM) neural networks are used,  

Fig. 2. Recurrent neural networks 



T.A. Bayramova          Problems of Information Technology (2024), vol. 15, no. 1, 52-61 

56 

which are a further improved type of recurrent 

neural network. Fig. 3 shows examples of a typical 

LSTM network (Kianimoqadam & Lapp, 2023). 

LSTM is a special type of recurrent neural 

networks first developed by S. Hochreiter and J. 

Schmidhuber in 1997 and later improved by many 

researchers. These networks are used to solve a 

wide range of problems, and in recent years, due to 

their good predictability of sequences, they have 

become widely used for predicting stocks and 

other stock market data. The ability to store 

information for a long time is one of the main 

advantages of these networks.  

A recurrent network can be described in the 

form of repeating modules; these modules consist 

of layers with a tangent activation function. 

Modules in LSTM networks have a rather complex 

structure and consist of 4 layers interconnected 

with a certain pattern. These networks add an 

internal state cell, the ability to extract the most 

significant features from the input data and decide 

which of them have the most impact and which 

should be passed on to the output. 

An LSTM network consists of modules. These 

modules combine to form the layers of the 

network. Modules consist of cells. The internal 

structure of LSTM cells is shown in Fig. 3. A cell 

state component tC  is added to the LSTM module, 

which is able to store data for a long time and 

transfer it to the next step. In Fig. 3, this component 

is shown as a horizontal line crossing the upper 

part of the cell. The state of the cell guarantees that 

all data will be transferred unchanged or deleted. 

This process is controlled by gates, each cell has 3 

types of gates: forget gate ( tf ), input gate ( ti ) and 

output gate ( to ). Filters are layers that allow data 

to be transmitted under certain conditions. The 

activation function of these layers is sigmoidal and 

hyperbolic tangent  (Salman et al., 2018). 

The operating principle of an LSTM cell consists 

of the following steps: 

1. The LSTM determines what information 

should be removed or retained from the cell 

state )( 1tC . This decision is made by the 

forgetting filter. tf  is estimated in the 

interval [0,1] based on the inputs 1th  and tx

. Based on the calculated value, it is 

determined which part of the information 

will be transmitted. 0 means no information 

will be passed, 1 means all information will 

be transmitted. 

2. A decision is made about what information 

will be stored in the cell state. In this step, the 

input filter ti  first determines which values 

to update. A new vector of candidate values 

tC
~

 is then calculated to be added to the cell 

state. 

3. The old state of the cell 1tС  is replaced by 

the new state tC .  

4. The output value th  is calculated. To do this, 

first the output gate to  is estimated in the 

interval [0,1] based on the data 1th  and tx  

passed to the input and passing through a 

layer with a sigmoid activation function. The 

cell state is then estimated in the interval [-

1,1] by passing through a layer with a 

tangent activation function. Based on them, 

the output value of the LSTM cell is 

calculated. 

The sequence for calculating these parameters is 

given below: 

)( 1 ftftft bxUhWf    
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Fig. 3. LSTM model 
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)( ttt Coh   

tout hLSTM   

W, U - weights, b – bias. 

5. Experiments 

In this section, a model based on recurrent neural 

networks is proposed for predicting the reliability of 

software systems. Proper selection of 

hyperparameters protects the model from 

overfitting and underfitting problems. In this study, 

the AutoML library was used in Python for 

hyperparameter optimization.  

3 metrics were used to evalute the performance 

of the model: 

1. Root Mean Square Error - RMSE:  
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Here iy  and iy  are the actual and predicted 

failure values at time it .  ii yx ,  is a set of data 

collected from n  number of observations. A small 

RMSE value indicates good model performance. 

1. The Average Error – AE 
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A small AE value indicates good model 

performance. 

2. Coefficient of determination 
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The coefficient of determination shows how 

well the model matches the database; it takes a value 

in the interval [0;1]. For the model to be accepted, the 

coefficient of determination must be at least 0.5. If 

this coefficient is above 0.8, the model can be 

considered quite good. 

The experiments were conducted in the Python 

programming environment.  To test the performance 

of the proposed model, 7 real databases of software 

product failures were used (Table 1) (DATA 

Directory in the CD-ROM).   

Failures that occur in software systems are 

recorded during testing and operation. This data is 

designated as ),( ii Nt . Here iN  is the total number 

of failures up to time it . In this case, the goal of 

predicting the reliability of a software system is to 

calculate the total number of future failures based on 

this data (DS2, DS3, DS7). 

The data can also be written as ),( ii Tx . Here iT  

is the total time until failure ix  occurs. In this case, 

the goal of predicting the reliability of a software 

system is to calculate the time of the next failure 

based on these data (DS1, DS4, DS5, DS6). 

In this article, the prediction was made based on 

both types of data. 

The DS1 database was used to compare the 

performance of the proposed model with existing 

models in terms of root mean square error and 

coefficient of determination (Table 2). This data was 

compiled by John D. Musa of Bell Telephone 

Laboratories from 136 faults observed in a real-time 

command and control system containing 21,700 

lines. This study used 3 data sets of approximately 

equal size. In (Yangzhen et al., 2017), the authors 

predicted software reliability using an LSTM 

network. They obtained AE=2.01 for the DS1 data. In 

the proposed model, AE = 0.6, since the optimal 

hyperparameters are selected. 

Data from DS1, DS2, DS3, DS4, DS5 and DS6 

were used to show the model's performance in terms 

of Average Error. Different models are taken for 

comparison (Wang & Zhang, 2018). 5 parametric 

(heterogeneous Poisson processes), 4 nonparametric 

(feed forward neural networks) models were 

considered (Table 3).  

Table 4 shows the comparison of the model with 

the PRNNDWCM (Roy et al., 2014), PNNE (Zheng et 

al., 2020) and DWCM (Su & Huang, 2007) hybrid 

neural network models proposed in recent years 

according to the AE indicator. 

Figs. 4-8 show results on real, training and test 

data sets for DS2, DS3, DS5, DS6 and DS7, 

respectively. From the figures it can be seen that the 

proposed model shows good prediction results. 

6. Conclusion 

Despite the existence of hundreds of models for 

predicting and assessing the reliability of software 

systems, the development of models based on new, 

modern technologies has become a necessity. This 

study uses seven datasets to examine the 

effectiveness of the proposed approach.  
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Table 1. Software failure data sets 

Dataset Faults detected LOC Software type 

DS1 136 21.700 Realtime Command and Control 

DS2 46 40.000 On-line Data Entry 

DS3 535 870.000 Realtime Control Application 

DS4 213 38.500 Flight Dynamic Application 

DS5 266 - Realtime Control Application 

DS6 181 - - 

DS7 81  Brazilian Electronic Switching System 

 

Table 2. Comparison of the performance of the proposed model with other models in terms of RMSE and 2R  

 Neural Net  Saburag-Goel Goel-Okumoto LSTM 

RMSE 0.0952 2.539 3.926 0.0051 
2R  0.9958 0.9911 0.9901 0.9995 

Table 3. Comparison of the performance of the proposed model with different models 

Data Models AE Data Models AE 

DS1 

FFN-Generalization 3.52 

DS4 

FFN-Generalization 6.83 

FFN-Prediction 2.32 FFN-Prediction 5.46 

JordanNet-Generalization 3.11 JordanNet-Generalization 4.30 

JordanNet-Prediction 3.21 JordanNet-Prediction 4.71 

Logarithmic 3.83 Logarithmic 23.97 

Inverse Polynomial 3.98 Inverse Polynomial 21.08 

Exponential 8.57 Exponential 24.84 

Power 3.94 Power 31.08 

Delayed S-shape 10.99 Delayed S-shape 11.36 

DNN-RED 0.12 DNN-RED 0.02 

LSTM 0.006 LSTM 0.005 

DS2 

FFN-Generalization 10.24 

DS5 

FFN-Generalization 13.90 

FFN-Prediction 12.32 FFN-Prediction 12.71 

JordanNet-Generalization 6.96 JordanNet-Generalization 13.73 

JordanNet-Prediction 9.52 JordanNet-Prediction 11.26 

Logarithmic 12.48 Logarithmic 19.12 

Inverse Polynomial 13.29 Inverse Polynomial 18.27 

Exponential 15.87 Exponential 30.54 

Power 12.95 Power 53.75 

Delayed S-shape 27.10 Delayed S-shape 32.98 

DNN-RED 0.11 DNN-RED 0.05 

LSTM 0.05 LSTM 0.036 

DS3 

FFN-Generalization 6.43 

DS6 

FFN-Generalization 8.32 

FFN-Prediction 6.80 FFN-Prediction 8.80 

JordanNet-Generalization 2.27 JordanNet-Generalization 2.41 

JordanNet-Prediction 1.31 JordanNet-Prediction 3.01 

Logarithmic 13.20 Logarithmic 17.00 

Inverse Polynomial 13.10 Inverse Polynomial 28.87 

Exponential 14.56 Exponential 9.15 

Power 24.71 Power 42.04 

Delayed S-shape 17.76 Delayed S-shape 30.41 

DNN-RED 0.07 DNN-RED 0.10 

LSTM 0.006 LSTM 0.02 
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The results were compared with those of both 

parametric and nonparametric reliability models. 

Experimental results prove the effectiveness of the 

proposed model. The main advantage of this model 

is that the prediction results are positive in datasets 

of different sizes collected from different application 

domains. The performance of the proposed model 

depends on the choice of hyperparameters. Selecting 

the optimal configuration and training algorithm is 

one of the difficult tasks facing machine learning 

specialists. In the future, it is possible to combine 

LSTM and other (Gated Recurrent Unit) models to 

predict defects in software systems, since hybrid 

models show the best results in prediction. 
 

Table 4. Comparison of LSTM and hybrid models 

 PRNNDWCM  PNNE  DWCM  LSTM 

AE 0.0112 0.0129 0.0176 0.0039 

 

  

Fig. 4. Training and prediction results for DS2 Fig. 5. Training and prediction results for DS3 

Fig. 7. Training and prediction results for DS6 Fig. 6. Training and prediction results for DS5 

Fig. 8. Training and prediction results for DS7 
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