
Problems of Information Technology (2024), vol. 15, no. 1, 52-61

Received 27 September 2023, Received in revised form 30 November 2023, Accepted 14 December 2023

http://doi.org/10.25045/jpit.v15.i1.07

2077-4001/© 2024 This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Predicting the reliability of software systems using recurrent

neural networks: LSTM model
Tamilla Bayramova

Institute of Information Technology, B. Vahabzade str., 9A, AZ1141 Baku, Azerbaijan

toma_b66@mail.ru

 https://orcid.org/0000-0002-8377-3572

A R T I C L E I N F O

Keywords:

Software Reliability Growth Models

Recurrent neural network

LSTM

Deep learning

Parametric model

Non-parametric model

 A B S T R A C T

The dynamics and complexity of processes occurring in complex software systems, as well

as the emergence of new types of malicious threats, further complicate the issues of ensuring

software reliability. Despite the development of hundreds of models for increasing the

reliability of software systems, this issue still remains relevant. Research shows that the use

of neural networks in predicting the reliability of software systems allows one to obtain more

accurate results. In this paper, to predict reliability, we used a neural network model with

long short-term memory, which is a type of recurrent neural networks. Seven real-world

software crash datasets were used to test the model's performance. The experiments were

carried out in Python. Both parametric and nonparametric models were taken for

comparison. The experimental results showed the practical significance of using the

proposed model in predicting the reliability of software systems.

1. Introduction

Advances in science and technology have

created ample opportunities for the development

of high-performance equipment and high-quality

software systems. However, in contrast to the rapid

development of hardware technologies, the

development of software technologies lags behind

in all respects (quality, reliability, performance,

security, etc.). As a result of errors in software

systems, accidents can occur, ranging from minor

inconveniences to large economic losses and

human lives (Lai & Garg, 2020).

Software systems have become an integral part

of modern society. With the increase in the number

of functions assigned to these systems, the number

of errors and failures in these systems increases. All

components of software systems must be

monitored before they are presented to the user.

Prediction and reliability assessment have become

one of the important problems that need to be

solved when developing software systems. It

determines the end time of testing a software

system, thereby saving time and budget. Reliability

in safety-critical systems (medical equipment,

nuclear power plants, defense and aviation

industries, etc.) requires more accurate assessment.

It is not possible to directly assess the reliability of

software, and since the requirements for reliability in

critical applications are very high, the volume of

work performed in this area increases several times.

To ensure the reliability of software systems, it is

important to develop and implement effective

methods and models that warn about and prevent

errors, while at the same time allowing the program

to continue functioning when these errors occur.

Models for improving the reliability of software

systems are divided into two groups: parametric and

non-parametric models (Fig. 1) (Sahu et al., 2021).

Parametric models are built based on certain

considerations and assumptions. Traditional

parametric models such as non-homogeneous

Poisson process (NHPP) models have been

successfully used in software reliability engineering.

15 (1)

2024

 Available online at www.jpit.az

http://doi.org/10.25045/jpit.v15.i1.07
mailto:toma_b66@mail.ru
https://orcid.org/0000-0002-8377-3572

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

53

However, no parametric model can accurately

predict all cases. The importance of predicting the

reliability of software systems has turned the

development of more accurate and reliable methods

and models into one of the urgent tasks.

In recent years, to overcome the difficulties that

arise in real problems in the field of modeling and

predicting the reliability of FT, methods of machine

learning and soft computing have been used. Modern

and more promising methods for predicting the

reliability of software systems, especially the intensity

and duration of failures, are based on nonparametric

models. Such models eliminate the main

disadvantages of parametric models, since no

assumptions or other restrictions are made about the

nature of errors. These methods are based on the time

history of failures based on historical data presented

as time series. In recent years, various types of neural

networks have been used for time series forecasting:

multilayer perceptron (MLP), convolutional neural

networks (CNN), recurrent neural networks (RNN),

and other deep learning (DL) models. The neural

network model requires only software failure history

as input and predicts the timing of future failures

more accurately than parametric models (Lakshman

& Ramasamy, 2017; Roy et al., 2014; Musa, 2004;

Bayramova, 2023).

Karunaithi et al. (1991) first used a neural network

to evaluate software reliability. To evaluate reliability,

they used bug detection history as input and

cumulative number of bugs detected as output. In

their research, they used feedforward neural

network, Jordan network and Elman network.

Comparing the results with several statistical models,

they showed that they obtained better results.

Khoshgoftaar and Lenning (1995) used a neural

network as a tool to predict the number of errors in

programs. They presented a new approach to

reliability modeling and experimentally proved the

superiority of neural network models.

In this study, a long short-term memory neural

network model, which is a special type of recurrent

neural networks, is used to predict the reliability of a

software system. Scientific novelty of the article: to

select the hyperparameters of the article, the AutoML

hyperparameter optimization method was used. This

model gives good results for both large and small

data sets. Data from real software projects was used

to train and test the model's performance, and a series

of experiments were conducted to compare it with

other competing approaches.

2. Releated work

The increasing demand for the quality of

software systems requires the development of

accurate modeling methods for predicting the

reliability of software systems. Software reliability

models are very useful for estimating the

probability of failures in software systems.

Cai et al. (2001) proposed a method for

predicting software reliability based on neural

networks. For training, they used a

Fig. 1. Software reliability growth models

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

54

backpropagation algorithm. Based on the last 50

failures, the study predicted the time of the next

failure. Lu and Ma (2018) assessed software

reliability using a modified Whale algorithm. The

article proposes a three-stage model. The

experimental results showed that the accuracy of

the three-stage model in predicting software errors

is higher than that of the one-stage model.

Tian and Noor (2005) combined a neural

network with an evolutionary algorithm to

evaluate reliability. They applied a genetic

algorithm to optimize the number of input and

hidden layers. Granitto et al. (2005) showed

through experiments that it is possible to improve

the performance of neural network models by

combining multiple neural networks.

Hu et al. (2006) proposed an artificial neural

network model to predict the reliability of current

projects based on failures in past projects. Aljahdali

and Buragga (2008) combined multilayer

perceptron, radial basis function, Elman recurrent

neural network, and fuzzy neural network models

to predict software reliability.

Jheng (2009) used an ensemble of neural networks

to predict the reliability of software systems. The

experiment was carried out on two databases and the

result was compared with a neural network model

and several statistical models. Experiments have

shown that an ensemble of neural networks has better

performance. Singh and Kumar (2010) used a

feedforward neural network model to predict the

reliability of a software system.

Ramasamy et al. (2016) proposed a neural

network-based dynamic weighted combinatorial

model (DWCM) for software reliability prediction.

In this model, they took three different parametric

models as the activation function in the hidden

layer. They applied the result to two data sets and

compared it with the results of those statistical

models separately. Experiments have shown that

the neural network model gives better results.

Munir et al. (2021) used a combination of GRU-

LSTM to predict defects. They did not choose

historical testing data as data for the forecast, but

identified 32 program code operator level metrics.

Performance tests cover a variety of programs and

sets of variants written by thousands of

programmers. The recall, accuracy, precision, and

F1 measurement of the GRU-LSTM-based model

increased by 1%, 4%, 5%, and 2%, respectively.

In (Yangzhen et al., 2017), a software reliability

prediction model based on the long short-term

memory network was proposed. To improve

performance, the authors added layer normalization

to the model. The results were compared with other

neural network models, and the proposed approach

showed better predictive performance.

3. Recurrent neural networks

Machine learning is a type of artificial

intelligence technology that aims to develop

methods and algorithms that make predictions or

decisions based on data. Deep learning refers to

machine learning techniques and consists of a

neural network (deep neural network) consisting

of several layers. Deep learning models can

identify complex patterns in data, but require more

parameters and computational resources.

Deep learning methods are used in a number of

areas to solve various problems (classification of

images, video and audio data, speech recognition,

sentiment analysis, time series forecasting, etc.).

The main advantage of these models is the

automatic extraction of the best features from the

input data using a general purpose learning

procedure (LeCun et al., 2015). The history of the

development of deep learning models and their

application in artificial neural networks is explored

in detail by Schmidhuber et al. (2015).

Time series forecasting has been the focus of

machine learning researchers for over 40 years. In

recent years, many experiments have proven that

recurrent neural networks provide the best results

in this area (Sezer et al., 2020).

Recurrent neural networks (RNN) are a type of

deep learning network that work better when

analyzing time series or sequential data. It was first

developed in 1980 for forecasting time series and

sequential data. One of the main ideas of a

recurrent neural network is that it can use the

information obtained in the previous stage in the

current task. Unlike simple feed forward neural

networks (FNNs), RNNs have internal memory to

process input data. The architecture of an RNN

model consists of different numbers of layers and

different types of blocks at each layer. The main

difference between RNN and FNN is that each

block receives both current and previous inputs

simultaneously. The result also depends on

previous data. In this way, memory is formed in

the network (Fig. 2) (Hewamalage et al., 2021).

The basic architecture of an RNN consists of an

input block, an output block and hidden blocks.

Hidden blocks perform all the calculations and

generate the output by adjusting the weights.

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

55

The RNN is called "recurrent" because it does

the same thing for each element of the sequence,

and the result depends on previous calculations.

The network changes the weights by comparing

the current hidden layer error with the previous

hidden layer error.

Recurrent neural networks use backpropagation

through time (BPTT) as the training algorithm.

Recurrent neural networks adjust weights using

BPTT algorithm. The learning algorithm is used to

correct the weights in the neural network and

ensures that the value obtained at the network

output is closer to the actual value. During training,

serial data is fed into the network and the output is

compared with the expected value. The difference

between the received and expected output price is

calculated using the loss function. The goal of

training is to adjust the network weights to

minimize this function.

BPTT calculates the gradients of the network

output loss function at each step as a function of

time. The gradient is a vector used to update the

neural network's weights (determining in which

direction the function is incremented). Because

gradients are propagated back in time to update

the network's weights, updating the weights

depends on the entire data sequence in addition to

the input and output data. This allows RNNs to

learn long-term dependencies and better cope with

problems associated with data sequences.

An optimization algorithm (SGD, RMSProp,

ADAM) is used to adjust the weights. LSTM

networks use various activation functions. The

most commonly used activation functions are

sigmoid (1), ReLU (rectified linear unit) (2), laky-

ReLU (3), hyperbolic tangent (4) and softmax (5):

ze
z




1

1
)( (1)

zz

zz

ee

ee
z








)tanh((2)

),0max()(zzR  (3)

))(0(1))(0(1)(xxxxzR   (4)




j i

i
i

z

z
zsoft

exp

exp
)max((5)

The hyperparameters of a recurrent neural

network determine the architecture of the network,

and the correct choice of these parameters affects

the performance of the network. The

hyperparameters of the network are the number of

hidden layers, number of epochs, activation

functions, learning rate, batch size, iteration size,

etc. Proper selection of these hyperparameters is a

major challenge and ensures accurate performance

of the model (Reimers & Gurevych, 2017).

The main disadvantage of a recurrent neural

network is the problem of gradient vanishing and

exploding gradient. The vanishing gradient

problem occurs when the strength of the gradient

is too small because the layers cannot learn. This

makes the learning process more difficult. An

exploding gradient problems occurs as a result of

the accumulation of large error gradients. This

causes the neural network's weights to be updated

frequently during training. As a result, the model

cannot be trained on training data.

4. Long Short-Term Memory

Recurrent neural networks cannot store very large

data vectors. To overcome this problem, Long Short-

Term Memory (LSTM) neural networks are used,

Fig. 2. Recurrent neural networks

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

56

which are a further improved type of recurrent

neural network. Fig. 3 shows examples of a typical

LSTM network (Kianimoqadam & Lapp, 2023).

LSTM is a special type of recurrent neural

networks first developed by S. Hochreiter and J.

Schmidhuber in 1997 and later improved by many

researchers. These networks are used to solve a

wide range of problems, and in recent years, due to

their good predictability of sequences, they have

become widely used for predicting stocks and

other stock market data. The ability to store

information for a long time is one of the main

advantages of these networks.

A recurrent network can be described in the

form of repeating modules; these modules consist

of layers with a tangent activation function.

Modules in LSTM networks have a rather complex

structure and consist of 4 layers interconnected

with a certain pattern. These networks add an

internal state cell, the ability to extract the most

significant features from the input data and decide

which of them have the most impact and which

should be passed on to the output.

An LSTM network consists of modules. These

modules combine to form the layers of the

network. Modules consist of cells. The internal

structure of LSTM cells is shown in Fig. 3. A cell

state component tC is added to the LSTM module,

which is able to store data for a long time and

transfer it to the next step. In Fig. 3, this component

is shown as a horizontal line crossing the upper

part of the cell. The state of the cell guarantees that

all data will be transferred unchanged or deleted.

This process is controlled by gates, each cell has 3

types of gates: forget gate (tf), input gate (ti) and

output gate (to). Filters are layers that allow data

to be transmitted under certain conditions. The

activation function of these layers is sigmoidal and

hyperbolic tangent (Salman et al., 2018).

The operating principle of an LSTM cell consists

of the following steps:

1. The LSTM determines what information

should be removed or retained from the cell

state)(1tC . This decision is made by the

forgetting filter. tf is estimated in the

interval [0,1] based on the inputs 1th and tx

. Based on the calculated value, it is

determined which part of the information

will be transmitted. 0 means no information

will be passed, 1 means all information will

be transmitted.

2. A decision is made about what information

will be stored in the cell state. In this step, the

input filter ti first determines which values

to update. A new vector of candidate values

tC
~

 is then calculated to be added to the cell

state.

3. The old state of the cell 1tС is replaced by

the new state tC .

4. The output value th is calculated. To do this,

first the output gate to is estimated in the

interval [0,1] based on the data 1th and tx

passed to the input and passing through a

layer with a sigmoid activation function. The

cell state is then estimated in the interval [-

1,1] by passing through a layer with a

tangent activation function. Based on them,

the output value of the LSTM cell is

calculated.

The sequence for calculating these parameters is

given below:

)(1 ftftft bxUhWf  

)(1 ititit bxUhWi  

)(
~

1 CtCtCt bxUhWC  

)(1 ototot bxUhWo  

ttttt CiCfC
~

1  

Fig. 3. LSTM model

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

57

)(ttt Coh 

tout hLSTM 

W, U - weights, b – bias.

5. Experiments

In this section, a model based on recurrent neural

networks is proposed for predicting the reliability of

software systems. Proper selection of

hyperparameters protects the model from

overfitting and underfitting problems. In this study,

the AutoML library was used in Python for

hyperparameter optimization.

3 metrics were used to evalute the performance

of the model:

1. Root Mean Square Error - RMSE:

 



n

i

ii yy
n

RMSE
1

1

Here iy and iy are the actual and predicted

failure values at time it .  ii yx , is a set of data

collected from n number of observations. A small

RMSE value indicates good model performance.

1. The Average Error – AE







n

i

i

y

yy

n
AE

1

1
%100

A small AE value indicates good model

performance.

2. Coefficient of determination














n

i

ii

i

n

i

i

yy

yy

R

1

2

2

12

)(

)(

1

Here iy and iy are the actual and predicted

failure values at time it and 



n

i

iy
n

y
1

1
.

The coefficient of determination shows how

well the model matches the database; it takes a value

in the interval [0;1]. For the model to be accepted, the

coefficient of determination must be at least 0.5. If

this coefficient is above 0.8, the model can be

considered quite good.

The experiments were conducted in the Python

programming environment. To test the performance

of the proposed model, 7 real databases of software

product failures were used (Table 1) (DATA

Directory in the CD-ROM).

Failures that occur in software systems are

recorded during testing and operation. This data is

designated as),(ii Nt . Here iN is the total number

of failures up to time it . In this case, the goal of

predicting the reliability of a software system is to

calculate the total number of future failures based on

this data (DS2, DS3, DS7).

The data can also be written as),(ii Tx . Here iT

is the total time until failure ix occurs. In this case,

the goal of predicting the reliability of a software

system is to calculate the time of the next failure

based on these data (DS1, DS4, DS5, DS6).

In this article, the prediction was made based on

both types of data.

The DS1 database was used to compare the

performance of the proposed model with existing

models in terms of root mean square error and

coefficient of determination (Table 2). This data was

compiled by John D. Musa of Bell Telephone

Laboratories from 136 faults observed in a real-time

command and control system containing 21,700

lines. This study used 3 data sets of approximately

equal size. In (Yangzhen et al., 2017), the authors

predicted software reliability using an LSTM

network. They obtained AE=2.01 for the DS1 data. In

the proposed model, AE = 0.6, since the optimal

hyperparameters are selected.

Data from DS1, DS2, DS3, DS4, DS5 and DS6

were used to show the model's performance in terms

of Average Error. Different models are taken for

comparison (Wang & Zhang, 2018). 5 parametric

(heterogeneous Poisson processes), 4 nonparametric

(feed forward neural networks) models were

considered (Table 3).

Table 4 shows the comparison of the model with

the PRNNDWCM (Roy et al., 2014), PNNE (Zheng et

al., 2020) and DWCM (Su & Huang, 2007) hybrid

neural network models proposed in recent years

according to the AE indicator.

Figs. 4-8 show results on real, training and test

data sets for DS2, DS3, DS5, DS6 and DS7,

respectively. From the figures it can be seen that the

proposed model shows good prediction results.

6. Conclusion

Despite the existence of hundreds of models for

predicting and assessing the reliability of software

systems, the development of models based on new,

modern technologies has become a necessity. This

study uses seven datasets to examine the

effectiveness of the proposed approach.

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

58

Table 1. Software failure data sets

Dataset Faults detected LOC Software type

DS1 136 21.700 Realtime Command and Control

DS2 46 40.000 On-line Data Entry

DS3 535 870.000 Realtime Control Application

DS4 213 38.500 Flight Dynamic Application

DS5 266 - Realtime Control Application

DS6 181 - -

DS7 81 Brazilian Electronic Switching System

Table 2. Comparison of the performance of the proposed model with other models in terms of RMSE and 2R

 Neural Net Saburag-Goel Goel-Okumoto LSTM

RMSE 0.0952 2.539 3.926 0.0051
2R 0.9958 0.9911 0.9901 0.9995

Table 3. Comparison of the performance of the proposed model with different models

Data Models AE Data Models AE

DS1

FFN-Generalization 3.52

DS4

FFN-Generalization 6.83

FFN-Prediction 2.32 FFN-Prediction 5.46

JordanNet-Generalization 3.11 JordanNet-Generalization 4.30

JordanNet-Prediction 3.21 JordanNet-Prediction 4.71

Logarithmic 3.83 Logarithmic 23.97

Inverse Polynomial 3.98 Inverse Polynomial 21.08

Exponential 8.57 Exponential 24.84

Power 3.94 Power 31.08

Delayed S-shape 10.99 Delayed S-shape 11.36

DNN-RED 0.12 DNN-RED 0.02

LSTM 0.006 LSTM 0.005

DS2

FFN-Generalization 10.24

DS5

FFN-Generalization 13.90

FFN-Prediction 12.32 FFN-Prediction 12.71

JordanNet-Generalization 6.96 JordanNet-Generalization 13.73

JordanNet-Prediction 9.52 JordanNet-Prediction 11.26

Logarithmic 12.48 Logarithmic 19.12

Inverse Polynomial 13.29 Inverse Polynomial 18.27

Exponential 15.87 Exponential 30.54

Power 12.95 Power 53.75

Delayed S-shape 27.10 Delayed S-shape 32.98

DNN-RED 0.11 DNN-RED 0.05

LSTM 0.05 LSTM 0.036

DS3

FFN-Generalization 6.43

DS6

FFN-Generalization 8.32

FFN-Prediction 6.80 FFN-Prediction 8.80

JordanNet-Generalization 2.27 JordanNet-Generalization 2.41

JordanNet-Prediction 1.31 JordanNet-Prediction 3.01

Logarithmic 13.20 Logarithmic 17.00

Inverse Polynomial 13.10 Inverse Polynomial 28.87

Exponential 14.56 Exponential 9.15

Power 24.71 Power 42.04

Delayed S-shape 17.76 Delayed S-shape 30.41

DNN-RED 0.07 DNN-RED 0.10

LSTM 0.006 LSTM 0.02

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

59

The results were compared with those of both

parametric and nonparametric reliability models.

Experimental results prove the effectiveness of the

proposed model. The main advantage of this model

is that the prediction results are positive in datasets

of different sizes collected from different application

domains. The performance of the proposed model

depends on the choice of hyperparameters. Selecting

the optimal configuration and training algorithm is

one of the difficult tasks facing machine learning

specialists. In the future, it is possible to combine

LSTM and other (Gated Recurrent Unit) models to

predict defects in software systems, since hybrid

models show the best results in prediction.

Table 4. Comparison of LSTM and hybrid models

 PRNNDWCM PNNE DWCM LSTM

AE 0.0112 0.0129 0.0176 0.0039

Fig. 4. Training and prediction results for DS2 Fig. 5. Training and prediction results for DS3

Fig. 7. Training and prediction results for DS6 Fig. 6. Training and prediction results for DS5

Fig. 8. Training and prediction results for DS7

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

60

References

Aljahdali, S. H., & Buragga, K. A. (2008). Employing four ANNs

paradigms for software reliability prediction: an analytical

study. ICGST-AIML Journal, ISSN, 1687-4846.

Bayramova, T. A. (2023). Development of a Method for Software

Reliability Assessment using Neural Networks. Procedia

Computer Science, 230, 445-454.

Cai, K. Y., Cai, L., Wang, W. D., Yu, Z. Y., & Zhang, D. (2001). On

the neural network approach in software reliability

modeling. Journal of Systems and Software, 58(1), 47-62.

https://doi.org/10.1016/S0164-1212(01)00027-9

DATA Directory in the CD-ROM.

https://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html

Govindasamy, P., & Dillibabu, R. (2020). Development of

software reliability models using a hybrid approach and

validation of the proposed models using big data. The

Journal of Supercomputing, 76(4), 2252-2265.

https://doi.org/10.1007/s11227-018-2457-8

Granitto, P. M., Verdes, P. F., & Ceccatto, H. A. (2005). Neural

network ensembles: evaluation of aggregation algorithms.

Artificial Intelligence, 163(2), 139-162.

https://doi.org/10.1016/j.artint.2004.09.006

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent

neural networks for time series forecasting: Current status

and future directions. International Journal of Forecasting,

37(1), 388-427. https://doi.org/10.1016/j.ijforecast.2020.06.008

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8), 1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735

Hu, Q. P., Dai, Y. S., Xie, M., & Ng, S. H. (2006). Early software

reliability prediction with extended ANN model. In 30th

Annual International Computer Software and Applications

Conference (COMPSAC'06), Chicago, USA, September 2006

(pp. 234-239). https://doi.org/10.1109/COMPSAC.2006.130

Karunanithi, N., Malaiya, Y. K., & Whitley, L. D. (1991).

Prediction of software reliability using neural networks.

In ISSRE (pp. 124-130).

Khoshgoftaar, T. M., & Lanning, D. L. (1995). A neural network

approach for early detection of program modules having

high risk in the maintenance phase. Journal of Systems and

Software, 29(1), 85-91.

https://doi.org/10.1016/0164-1212(94)00130-F

Kianimoqadam, A., & Lapp, J. (2023). Calculating the view factor

of randomly dispersed multi-sized particles using hybrid

GRU-LSTM recurrent neural networks regression.

International Journal of Heat and Mass Transfer, 202, 123756.

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123756

Lai, R., & Garg, M. (2012). A detailed study of NHPP

software reliability models. J. Softw., 7(6), 1296-1306.

doi:10.4304/jsw.7.6.1296-1306

Lakshmanan, I., & Ramasamy, S. (2017). Improving software

reliability estimation using multi-layer neural-network

combination model. International Journal of Innovative

Computing and Applications, 8(2), 113-121,

https://doi.org/10.1504/IJICA.2017.084897

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.

Nature, 521(7553), 436-444.

https://doi.org/10.1038/nature14539

Lu, K., & Ma, Z. (2018, October). Parameter estimation of

software reliability growth models by a modified whale

optimization algorithm. In 2018 17th International

Symposium on Distributed Computing and Applications for

Business Engineering and Science (DCABES), Wuxi, China,

October 2018 (pp. 268-271).

https://doi.org/10.1109/DCABES.2018.00076

Mičko, R., Chren, S., & Rossi, B. (2022). Applicability of Software

Reliability Growth Models to Open Source Software. In 2022

48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Gran Canaria, Spain,

August - September 2022 (pp. 255-262).

https://doi.org/10.1109/SEAA56994.2022.00047

Musa, J. D. (2004). Software reliability engineering: more reliable

software. Faster Development and Testing, 632.

Munir, H. S., Ren, S., Mustafa, M., Siddique, C. N., & Qayyum, S.

(2021). Attention based GRU-LSTM for software defect

prediction. Plos one, 16(3), e0247444.

https://doi.org/10.1371/journal.pone.0247444

Ramasamy, S., & Preetha, C. D. (2016). Dynamically weighted

combination model for describing inconsistent failure data

of software projects. Indian Journal of Science and

Technology, 9(35), 1-4.

http://doi.org/10.17485/ijst/2016/v9i35/90211

Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for

deep LSTM-networks for sequence labeling tasks. arXiv

preprintarXiv:1707.06799.

https://doi.org/10.48550/arXiv.1707.06799

Roy, P., Mahapatra, G. S., Rani, P., Pandey, S. K., & Dey, K. N.

(2014). Robust feedforward and recurrent neural network

based dynamic weighted combination models for software

reliability prediction. Applied Soft Computing, 22, 629-637.

https://doi.org/10.1016/j.asoc.2014.04.012

Sahu, K., Alzahrani, F. A., Srivastava, R. K., & Kumar, R. (2021).

Evaluating the Impact of Prediction Techniques: Software

Reliability Perspective. Computers, Materials & Continua,

67(2). https://doi.org/10.32604/cmc.2021.014868

Salman, A. G., Heryadi, Y., Abdurahman, E., & Suparta, W.

(2018). Single layer & multi-layer long short-term memory

(LSTM) model with intermediate variables for weather

forecasting. Procedia Computer Science, 135, 89-98.

https://doi.org/10.1016/j.procs.2018.08.153

Schmidhuber, J. (2015). Deep learning in neural networks: An

overview. Neural networks, 61, 85-117.

https://doi.org/10.1016/j.neunet.2014.09.003

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020).

Financial time series forecasting with deep learning: A

systematic literature review: 2005–2019. Applied soft

computing, 90, 106181.

https://doi.org/10.1016/j.asoc.2020.106181

Singh, Y., & Kumar, P. (2010). Application of feed-forward

neural networks for software reliability prediction. ACM

SIGSOFT Software Engineering Notes, 35(5), 1-6.

https://doi.org/10.1145/1838687.1838709

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S.,

Kjærgaard, M. B., Dey, A., Sonne, T., & Jensen, M. M. (2015).

Smart devices are different: assessing and mitigating mobile

sensing heterogeneities for activity recognition. 2015 ACM

Conference on Embedded Networked Sensor Systems

(SenSys), Seoul, South Korea, November 2015 (pp. 127-140).

https://doi.org/10.1145/2809695.2809718

Su, Y. S., & Huang, C. Y. (2007). Neural-network-based

approaches for software reliability estimation using dynamic

weighted combinational models. Journal of Systems and

Software, 80(4), 606-615.

https://doi.org/10.1109/ACCESS.2020.2972826

Tian, L., & Noore, A. (2005). Evolutionary neural network

modeling for software cumulative failure time prediction.

Reliability Engineering & system safety, 87(1), 45-51.

https://doi.org/10.1016/j.ress.2004.03.028

Wang, J., & Zhang, C. (2018). Software reliability prediction

using a deep learning model based on the RNN encoder–

decoder. Reliability Engineering & System Safety, 170, 73-82.

https://doi.org/10.1016/j.ress.2017.10.019

https://doi.org/10.1016/S0164-1212(01)00027-9
https://www.cse.cuhk.edu.hk/~lyu/book/reliability/data.html
https://doi.org/10.1007/s11227-018-2457-8
https://doi.org/10.1016/j.artint.2004.09.006
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/COMPSAC.2006.130
https://doi.org/10.1016/0164-1212(94)00130-F
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123756
doi:10.4304/jsw.7.6.1296-1306
https://doi.org/10.1504/IJICA.2017.084897
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/DCABES.2018.00076
https://doi.org/10.1109/SEAA56994.2022.00047
https://doi.org/10.1371/journal.pone.0247444
http://doi.org/10.17485/ijst/2016/v9i35/90211
https://doi.org/10.48550/arXiv.1707.06799
https://doi.org/10.1016/j.asoc.2014.04.012
https://doi.org/10.32604/cmc.2021.014868
https://doi.org/10.1016/j.procs.2018.08.153
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.asoc.2020.106181
https://doi.org/10.1145/1838687.1838709
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1109/ACCESS.2020.2972826
https://doi.org/10.1016/j.ress.2004.03.028
https://doi.org/10.1016/j.ress.2017.10.019

T.A. Bayramova Problems of Information Technology (2024), vol. 15, no. 1, 52-61

61

Yangzhen, F., Hong, Z., Chenchen, Z., & Chao, F. (2017, July). A

software reliability prediction model: Using improved long

short term memory network. In 2017 IEEE International

Conference on Software Quality, Reliability and Security

Companion (QRS-C), Prague, Czech Republic, July 2017

(pp. 614-615).

https://doi.org/10.1109/QRS-C.2017.115

Zhen, L., Liu, Y., Dongsheng, W., & Wei, Z. (2020). Parameter

estimation of software reliability model and prediction

based on hybrid wolf pack algorithm and particle swarm

optimization. IEEE Access, 8, 29354-29369.

https://doi.org/10.1109/ACCESS.2020.2972826
Zheng, J. (2009). Predicting software reliability with neural

network ensembles. Expert systems with applications, 36(2),

2116-2122.

https://doi.org/10.1016/j.eswa.2007.12.029

https://doi.org/10.1109/QRS-C.2017.115
https://doi.org/10.1109/ACCESS.2020.2972826
https://doi.org/10.1016/j.eswa.2007.12.029

