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 A B S T R A C T 

One of the main issues in the controlling of aircraft in difficult terrain during wartime is 

to ensure normal movement, but also to fulfill the requirements of evading enemy 

control. This paper proposes an improved ant swarm algorithm that makes it possible to 

pre-determine and optimize the trajectory of aircraft in such areas. When applying this 

method, a special parameter is included in the probability of choosing a movement 

trajectory – the height of the terrain above sea level, so that each ant does not enter 

territory controlled by the enemy. Using a 2D-H digital elevation map, the rectangular 

area under study is divided into 90 m × 90 m squares. To take into account the variability 

of the terrain, the heuristic function of the ant swarm algorithm takes into account the 

parameters of distance, height and smooth surface. Additionally, to reduce the number 

of iterations and computations, the ants are divided in half by number and released from 

the start and end points simultaneously. As a result, it allows you to choose the shortest 

and minimum trajectory among various calculated trajectories. To verify the 

effectiveness of the proposed scheme, a number of computational experiments were 

conducted. Experimental results on various simulated and real terrain maps show that 

this algorithm can be used to select an initial reference trajectory in difficult terrain. 

1. Introduction 

Currently, as a result of the IV industrial 

revolution, we are seeing the use of aircraft in 

various spheres of human activity. Thus, many 

aircraft, both manned and unmanned, have begun 

to increasingly penetrate our lives, like other 

means of transportation. 

These devices are used (Kureychik et al., 2008; 

Aghazada et al., 2018; Aghazada et al., 2019) in 

military and civil affairs: 

 for transportation of goods to hard-to-reach 

places using multiple modes of transport; 

 to collect information for various purposes; 

 in emergency situations and other similar 

operations 

The main advantages of using unmanned aerial 

vehicles (UAVs) are their versatility, as well as low 

operating costs and low levels of human error 

(Merz et al., 2013).  

One of the problems that arises when using 

UAVs is the issue of determining the most optimal 

route to avoid various natural and artificial 

obstacles. Various hardware and methods are used 

to detect obstacles: light detection, distance 

measurement (Carloni et al., 2013) or image 

processing, etc. (Dorigo, 1992). In any case, in order 

to avoid obstacles, you must know their location 
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and corresponding coordinates in advance. 

The main purpose of route planning in the field 

of unmanned aerial vehicle research is to 

determine the optimal or suboptimal, safe and 

collision-free path from the starting point to the 

destination point in the presence of obstacles (Chen 

et al., 2010; Deepak et al., 2012). The process of 

planning the route of the UAV according to the 

history of development can be divided into: 

• traditional route planning; 

• intellectual route planning. 

Traditional route planning algorithms include 

temperature simulation algorithm (Miao & Tian, 

2013), algorithms created using potential function 

theory (Cetin et al., 2014; Nair et al., 2015), fuzzy 

logic algorithm (Li et al., 2013; Jiang et al., 2014; 

Bakdi et al., 2016), etc. However, these traditional 

methods cannot be improved in terms of route 

search efficiency and route optimization. 

The intelligent path planning algorithm 

includes Ant Colony Optimization (ACO) 

(Jovanovic et al., 2016; Wang et al., 2016), Genetic 

Algorithm (Arantes et al., 2017, Lin et al., 2017), 

Neural Network (He et al., 2017, He et al., 2017a; 

He et al., 2017b) and Particle Swarm Algorithm 

(Das et al., 2016; Song et al., 2016). 

The ant swarm algorithm has the advantages of 

high reliability, good global optimization ability, 

and internal parallelism. Moreover, it easily 

integrates with many heuristic algorithms to 

improve the performance of the algorithms. 

The Ant Colony Optimization (ACO) algorithm 

was first proposed by Marco Dorigo in 1992 to 

solve the problem of finding an optimal path in a 

graph (Earl et al., 2005). The algorithm was created 

by simulating the feeding process of ants in nature. 

In search of food, ants first move randomly, and 

having found food, they return to their colony and 

mark the path they have traveled with a 

pheromone that has a special smell. Over time, the 

pheromone begins to evaporate, thereby reducing 

its attractiveness. Of course, pheromone 

evaporation varies depending on the time required 

to reach and return the bait. The shorter the 

distance, the more pheromone remains and the 

stronger its smell. Of course, other ants also prefer 

this, and as a result, the shortest path will be 

determined for all ants (Dorigo et al., 1997). 

Currently, some metaheuristic models of ACO 

have been proposed. Among them, the most used 

are ACS (ant colony system) (Stützle et al., 2000), 

MMAS (Max-MİN ant system) (Schouwenaars et 

al., 20001), Ant Colony Optimization (ACO) and 

others (Lučić et al., 2003; Pham et al., 2009; 

Kureychik et al., 2010). Almost all of these 

algorithms boil down to the problem of finding the 

optimal path in a graph. 

This feature of the ant algorithm allows it to be 

used to solve many practical problems – transport 

problems (Kochegurova et al., 2014), optimization 

of routes in urban transport (Levanov et al., 2010), 

production optimization problems and other 

problems. 

Xiaolin Dai et al. also propose an improved ant 

swarm algorithm to achieve efficient search 

capabilities in path planning on complex terrain 

maps for UAVs (Agayev et al., 2023; Dai et al., 

2019). The improved ant swarm algorithm uses 

features of Algorithm A and the MAX-MIN Ant 

system. So, in this work, a network environment 

model is first constructed. To improve the heuristic 

information of the ant swarm algorithm, the 

evaluation function and deformation prevention 

operator of Algorithm A are introduced, which can 

improve the convergence speed and smoothness of 

the global path. A backtracking mechanism is then 

applied to solve the deadlock problem. The 

pheromone is effectively restricted to identified 

unfavorable trajectories to prevent premature 

termination of the search. This gives ACO the 

ability to effectively address the challenges of 

tunnels, potholes and congestion encountered in 

challenging terrain and perform better than 

traditional ACO versions. The simulation results 

show that the improved ant colony algorithm is 

more efficient and faster. 

However, due to the randomness of the choice 

of a new path by ants and the inconsistency of 

updating the intensity of pheromones, the 

traditional ant swarm algorithm can easily fall into 

a local pit and is prone to poor convergence. With 

this goal, many researchers present various 

improved methods for solving problems of 

pheromone renewal and path search strategies 

(Stützle et al., 2000; Zeng et al., 2016; Zhao et al., 

2016; Zhang, 2017). The authors proposed the Ant 

Colony System (ACS) algorithm to accelerate the 

convergence rate of ACO by updating pheromones 

on the path of ants of each generation (Stützle et al., 

2000). Due to the adaptive change in the volatility 

of the pheromone in the ACS algorithms, the search 

capabilities of the ant colony and the aggregation 

speed of the algorithm were improved (Zhao et al., 

2016). Some “smart algorithms” were proposed to 

determine the initial trajectory, which can be 

converted into the initial distribution of 
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pheromones, in order to avoid the random search 

of an ant colony. Information about the path (for 

example, the density and weight of the path) is 

added to the initial matrix of pheromones, which 

can affect the efficiency of the algorithm (Zeng et 

al., 2016). The heuristic function was corrected to 

improve the speed of convergence of the algorithm 

to the target point (Stützle et al., 2000). The authors 

introduced the concept of an unlimited step 

distance to find the optimal path, so that the 

improved ACO could find a shorter path and 

converge better. In addition, many researchers also 

combined the ant swarm algorithm with other 

(intelligent) algorithms (He et al., 2016a; Liu et al., 

2016; Yen et al., 2018; He et al., 2017c). It is also 

proposed to use the artificial potential field method 

to improve the ability of the ant colony algorithm 

to detect obstacles (Liu et al., 2016). To minimize 

the error of iterative training, a method of fuzzy 

optimization of an ant colony was proposed (Yen 

et al., 2018). 

A hybrid scheme using mutual learning and 

adaptive ant swarm algorithm optimization (MuL-

ACO) was proposed in the study (Cheng et al., 

2010) aimed at determining and optimizing the 

trajectory of UAVs in complex terrains. A 2D-H 

map is presented in that paper to describe a non-

uniform environment with various obstacles. Then, 

an adaptive ant swarm algorithm is proposed to 

determine the movement trajectories of UAs before 

flight. Based on the “temperature reduction 

function” of the simulated algorithm, the volatility 

coefficient of the pheromone is adjusted to 

adaptively accelerate the algorithm change. 

Additionally, distance, height factors, and 

smoothness factors are taken into account in the 

algorithm to adapt to uneven environments. A 

mutual learning algorithm is designed to further 

smooth and shorten the initial trajectories. In that 

work, the sequence of different trajectory nodes 

learn from each other to obtain the shortest 

trajectory sequence to optimize the trajectory. The 

experimental results of the authors' proposed 

scheme show that by applying MuL-ACO, the 

trajectory can be determined without colliding 

with obstacles with high comprehensive quality in 

uneven environments. 

If the obstacles and route can be obtained prior 

to flight, a more convenient and relatively safe 

route can be determined using flight information 

recorded in the aircraft's on-board recorder. 

Thanks to this, you will be able to avoid existing 

permanent obstacles and conduct your flight as 

secretly as possible. 

They are also known to use the protective 

properties of the terrain to ensure stealth flight. A 

feature of this type of flight is to ensure the 

movement of the aircraft in a horizontal plane at 

low altitudes by choosing an optimally specified 

trajectory. In this case, the initial trajectory of the 

aircraft must correspond to the coordinates with 

the lowest absolute terrain heights in the horizontal 

plane. The proposed method for calculating the 

optimal reference trajectory takes into account 

various restrictions on the trajectory and 

maneuverability of the aircraft, for example, 

bypassing a limited area of the earth's surface, the 

accuracy of on-board sensors, speed, etc. 

Thus, the proposed problem comes down to the 

problem of choosing the optimal route between 

points A and B, the coordinates of which are 

known, which ensures the flight of the aircraft at 

the shortest distance, using the protective features 

of the terrain. 

This type of question can be applied to military 

and similar special forces organizations. 

Considering the above, the question can be 

formulated as follows. 

Finding the shortest desired flight route for an 

aircraft from a given point to another point by 

passing the lowest elevations of the terrain based 

on a digital map of the area. 

2. Solving method 

In the absence of obstacles, a suitable trajectory 

for the problem is a straight line segment 

connecting the start and target points. In this case, 

without taking into account the specific 

characteristics of the aircraft, the route can be 

found provided that the trajectory of movement is 

least different from a straight line by avoiding 

obstacles crossed by a straight line (Agayev et al., 

2023). However, since the obstacles are randomly 

distributed, in special cases (for example, when 

they are located close to each other), the solution to 

the problem may not be optimal. In this case, in 

order to take into account the relative position of 

all obstacles, this work provided a solution to the 

problem by using the ant algorithm. 

To solve the problem, a rectangular area is 

marked on the map containing points A and B and 

an obstacle. The rectangle is chosen so that segment 

AB is the midline along its length. Starting from 

point A, the rectangle is divided into M×N squares 

and a matrix L(M×N) is constructed, consisting of 
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the coordinates of the centers of these squares. 

It is assumed that each ant can travel from one 

center to another in one time (this can be any 

known fixed time). In other words, a rectangular 

area is divided into parts depending on the 

distance that the ant can travel per unit time. The 

ants are divided in half according to the number of 

K and one half is placed at the starting point (point 

A), and the other half at the end point (point B). 

Obstacles are areas of terrain of a certain height or 

territory controlled by the enemy. In both cases, we 

assume that it is possible to form a tabular 

(forbidden) set-TL(i,j), consisting of the coordinates 

of squares and linear boundaries of the location of 

obstacles on the map. 

As already mentioned above, in the absence of 

obstacles, the shortest distance will be straight AB. 

During the application of the algorithm, deviations 

from the straight line connecting the points 

𝐿0,𝑁/2  and  𝐿𝑀,𝑁/2 are noted, and as a result, a 

broken line [𝐿𝑖0,𝑝𝐿𝑖𝑚𝑎𝑥,𝑝] is obtained. A matrix 

𝐿(𝑀 × 𝑁)consisting of the coordinates of the center 

of each (i,j) square and a matrix 𝐻𝑖,𝑗 containing the 

corresponding heights are built on the basis of the 

digital map of the area. The distance from any 

point (i,j) of the horizontal plane to the projection 

of this straight line is called the smoothness 

parameter and denoted by 𝑑𝑖,𝑗 . In addition, the 

distance from this point to the target point will be 

called target desire and will be denoted by 𝑧𝑖,𝑗. 

Within the mentioned marks, the desire of the ant 

to reach the goal or the attractiveness of the path of 

movement will be shown 

𝜇𝑖,𝑗 =
1

𝑑𝑖,𝑗
+

1

𝑧𝑖,𝑗
+

1

𝐻𝑖,𝑗
     (1) 

At the beginning of the algorithm, K is the number 

of ants participating in the process, and T is the 

maximum number of iterations. State 𝑗 = (1, 𝑇) of 

each i-th ant 𝑖 = (1, 𝐾) at the j-th iteration 

𝑆𝑖(𝑗) = {𝑋𝑖𝑘,𝑗𝑘
𝑖,𝑗

, 𝜏𝑖𝑘,𝑗𝑘
𝑖,𝑗

, 𝜃𝑖𝑘,𝑗𝑘 , 𝑖𝑘 = 1, 𝑁, 𝑗𝑘 = 1, 𝑀}. 

It will show with three parameters: 

The first parameter 𝑋𝑖𝑘,𝑗𝑘
𝑖,𝑗  indicates the number of 

ants that have entered the square, the second 

parameter 𝜏𝑖𝑘,𝑗𝑘
𝑖,𝑗  indicates the current amount of 

pheromone in this square, and the third parameter 

𝜃𝑖𝑘,𝑗𝑘 indicates whether access to the square is 

allowed or prohibited: 
 

𝜃𝑖𝑘,𝑗𝑘 = {

1 𝑖𝑘 ≠ 0 ∪ 𝑀, 𝑗𝑘 ≠ 0 ∪ 𝑁 (𝑖𝑘, 𝑗𝑘) ∈ 𝐿(𝑁 × 𝑀)\𝑇𝐿(𝑖, 𝑗)

0                     𝑖𝑘 ≠ 0 ∪ 𝑀, 𝑗𝑘 ≠ 0 ∪ 𝑁 (𝑖𝑘, 𝑗𝑘) ∈ 𝑇𝐿(𝑖, 𝑗)

∞                                                   𝑖𝑘 = 0 ∪ 𝑀, 𝑗𝑘 = 0 ∪ 𝑁 
  (2) 

 

It should be noted that 𝜃𝑖𝑘,𝑗𝑘 does not change when 

the algorithm works. In the beginning, all cells, 

except (0, 𝑁/2) and (𝑀, 𝑁/2), are empty 

𝑋𝑖1,𝑗1
𝑖,1 = {

1 𝑖1 = 0 ⋁ 𝑖1 = 𝑀 , 𝑗1 = 𝑁/2
0 𝑖1 ≠ 0 ⋁ 𝑖1 = 𝑀 , 𝑗1 ≠ 𝑁/2 

    𝑖 = 1, 𝐾  (3) 

 

Number of ants in square (𝑖1, 𝑗1) at each 𝑗-th 

iteration  

𝑁𝑖1,𝑗1,𝑗 = {
∑ 𝑋𝑖1,𝑗1

𝑖,𝑗
+ 1 𝑖𝑓  (𝑖1, 𝑗1)     is selected

∑ 𝑋𝑖1,𝑗1
𝑖,𝑗

 𝑖𝑓 (𝑖1, 𝑗1)      is not selected
    (4) 

There can be no more than K ants in one square 

at a time. 

𝑁𝑖1,𝑗1,𝑗 ≤ 𝐾      (5) 

Here, the summation is performed by the ants that 

chose the square (𝑖1, 𝑗1) at the 𝑗-th iteration. On the 

other hand, it is impossible to get one and the same 

situation in two consecutive iterations: 

𝑎𝑟𝑔(𝑋𝑖𝑘,𝑗𝑘
𝑖,𝑗

) ≠  𝑎𝑟𝑔(𝑋𝑖𝑘,𝑗𝑘
𝑖,𝑗+1

)    (6) 

If the 𝑖th ant leaves the cell at the 𝑗th iteration, it will 

not be able to enter it at the 𝑗 + 1 -th iteration. The 

initial amount of pheromone in all squares is equal 

to 0. Thus, for each 𝑖-th ant in the initial case. 

𝑆𝑖(1) = {𝑋𝑖1,𝑗1
𝑖,1 , 0, 𝜃𝑖𝑘,𝑗𝑘  𝑖 = (1, 𝐾)}    (7) 

The probability of moving from square (𝑖𝑘, 𝑗𝑘) to 

one of the squares (it can be 3, 5, etc.) directed to 

the target point B in the 𝑖-th iteration (and the ants 

released from point B are directed to point A) is 

calculated as 

𝑝𝑖𝑘,𝑗𝑘
𝑙,𝑘,𝑖 =

𝛼𝑖𝑘,𝑗𝑘𝜏𝑙,𝑘
𝑖 +(1−𝛼𝑖𝑘,𝑗𝑘)𝜇𝑙,𝑘

∑ 𝛼𝑖𝑘,𝑗𝑘𝜏𝑙,𝑘
𝑖 +(1−𝛼𝑖𝑘,𝑗𝑘)𝜇𝑙,𝑘(𝑙,𝑘)∉𝑇𝐿(𝑖,𝑗)

𝜃𝑙,𝑘.  (8) 

In the initial case, it is possible to accept 𝑝𝑖𝑘,𝑗𝑘
𝑙,𝑘,0 =

1
5⁄ . This means that out of 5 adjacent squares in the 

direction of point B (𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 −

1), (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1) is chosen randomly. 

According to formula (6), at step(𝑖 − 1) there is no 

chance to return to neighboring cells in order to 

reach the goal faster. Getting a probability of 0 or ∞ 

means that the square is not selected. 

The parameter 𝛼𝑖𝑘,𝑗𝑘 =
1

∑|[𝐿𝑖0,𝑗0𝐿𝑖𝑘,𝑗𝑘]|
 is calculated 

as the inverse value of the length of the path from 

the origin of the coordinates to the square(𝑖𝑘, 𝑗𝑘). 

Formula (1) regulates the movement of ants along 

the line AB. 

Using formula (8), the ant calculates the 

probabilities of the remaining squares around each 

(𝑖𝑘, 𝑗𝑘) square, taking into account condition (1) 

and selects the largest of them. Note that in formula 

(8) when moving from the square(𝑖𝑘, 𝑗𝑘)  to other 

squares under the accepted conditions, the highest 

probability value 𝑝𝑖𝑘,𝑗𝑘
𝑙,𝑘,𝑖  is obtained at the highest 

value 𝜇𝑙,𝑘. According to formula (1), this value is 
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obtained at the lowest values of all three 

parameters 𝑑𝑖,𝑗 , 𝑧𝑖,𝑗 , 𝐻𝑖,𝑗. 

The pheromone changes when each 𝑖-th ant 

falls into the (𝑖𝑘, 𝑗𝑘) square. 

The change of pheromone occurs when every 𝑖-th 

ant enters the square. 

𝜏𝑖𝑘,𝑗𝑘
𝑖 (𝑡 + 1) = (1 − 𝛼) (𝜏𝑖𝑘,𝑗𝑘

𝑖 (𝑡) +

 ∑ ∑ 𝜏𝑖𝑘,𝑗𝑘
𝑙,𝑘 (𝑡1)

𝑋𝑖1,𝑗1
𝑖,𝑗

𝑙𝑘=1
𝑡
𝑡1=1 )    (9) 

 

𝛼 =
𝛼𝑖𝑘,𝑗𝑘

∑ 𝛼𝑙,𝑘(𝑙,𝑘)∉𝑇𝐿(𝑖,𝑗)
      (10)  

 

Here, α- is the evaporation rate of the pheromone. 

 

Algorithm 

Beginning 

{ 

Input: 

 A: Source station; 

 B: Target station; 

DRM: Digital relief map (𝑵 × 𝑴) size ; 

 K: Number of ants; 

T s the number of iterations. 

Output: 

 Desired Path: The trajectory along which the 

aircraft can move; 

{ 

A rectangle is drawn on the map with 

vertices A and B, 

𝑳(𝑵 × 𝑴) set of obstacles is constructed, 

𝑻𝑳(𝒊, 𝒋) is a set of obstacles and a straight 

line AB. 

The number of ants 𝑲 and the maximum 

number of iterations 𝑻 are  set.  

t=0 

Half of the ants are placed in square A 

and the other half in square B. 

The initial state is initialized by 

formula (1)-(3) and (7).  

Repeat 

{ 

t=t+1 

for each 𝑖 = 1,2, 𝐾 ants  

{ 

in the initial state (𝑖0, 𝑗0), the 

length of the route is taken 𝑙𝑖 = 0 

repeat 

{ 

Using formula (8), the probabilities for the 

squares around each (𝑖𝑘, 𝑗𝑘) square are 

calculated taking into account conditions (1), 

(2) and (9)-(10) and the maximum of them is 

selected. 

The coordinates of the selected square are 

added to the route. 

The route length is calculated  𝑙𝑖(𝑡) = 𝑙𝑖(𝑡) +

1 . 

The pheromone is replaced by 

formulas (9) and (10).  

} 

until the selected square is 

not a border square 

If ants 𝐿0,𝑁/2 or  𝐿𝑖𝑚𝑎𝑥,𝑁/2 it is 

squared  

{ 

the ant is returned to the starting 

position and the length of the route is 

memorized 

} 

If ants is on the boundary  

{ 

the ant is returned to the starting 

position and the route length is reset. 

} 

} 

The shortest route from the saved 

routes is displayed 

   } 

until number of iterations 𝑡 ≤ 𝑇 

} 

3. Experimental results 

On the basis of the algorithm mentioned above, 

a program was compiled in the MATLAB 

MathWorks environment and reports were created 

for various variants. In the first iteration of the 

algorithm, the ants are chosen arbitrarily, and in the 

following iterations, taking into account the 

pheromone sensitivity of the ants, they are forced to 

follow the routes of the previous iteration. Based on 

this approach, the results obtained when the 

parameters were changed were analyzed. 

Experiments were conducted based on real digital 

relief maps. For this, sections were selected on the 

map, where the terrain is more complex. The 

allocated territory is divided into squares measuring 

90 m x 90 m. When forming the table, the heights of 

a certain height were noted. The baseline is 

displayed as an orange line on all images. Various 

variants were considered in the calculations. 

3.1. Variant I 

In this variant, flight trajectories are determined 
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only taking into account the influence of altitude. 

In this version, the number of squares was taken 

as (50)×(40). The number of ants is 50, the 

maximum number of iterations is 100. All ants are 

released from point A. The choice of squares was 

limited to five squares of its surroundings, directed 

only towards the target point. The results are 

shown in Fig. 1. 

.  

Fig. 1. Result of reports performed according to variant I 

The most repeated trajectory among the possible 

trajectories is shown in the figure. Since the 

smoothness parameter and target aspiration are not 

taken into account during the calculation, the 

calculated routes are determined only at the lowest 

points of the terrain. At the same time, the lack of 

the route is not felt until a certain number of squares 

(in our case, up to the 30th square along the X 

coordinate), only after the 30-th square does the 

trajectory leave the target point. It should be noted 

that the ants, moving through the cells located 

above the base line, mostly remained unused (go 

faste) at the border point in the 20-th square along 

the X axis. 

Note that the trajectory highlighted in green in 

the figure shows the case where the ants are 

released in two directions - from the starting point 

and the target point, and this will be explained in 

the following variants (see variant V). 

3.2. Variant II 

In this variant, the parameter values in the 

calculations are preserved, as in variant I, when 

moving forward, only three squares are taken. The 

purpose of carrying out the calculation variant is to 

determine the reason for not achieving the target 

point in the previous version. As a result of 

numerous calculations, it was found that the result 

can be obtained by weakening the conditions 

imposed on the parameter, in other words, by 

reducing the height limit (Fig. 2). 

 

Fig. 2. Result of reports performed according to variant II 
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Note that when the height constraint was 

completely removed (meaning there were no 

obstacles), the ants reached the target point. 

(indicated by a black line). Although this is very 

close to the baseline, it is not a safe trajectory. When 

the height constraint is relatively relaxed, e.g. If in 

the previous version the obstacle was taken to be 

areas with a height of 500 m above sea level, then 

in this version taking the limit of 700 m or 800 m 

(orange trajectory) you can get different 

trajectories.  

3.3. Variant III 

In this variant, the influence of terrain size on 

search results was studied. Firstly, the area has 

decreased. 

It is known that height restrictions on small 

areas sometimes do not give the desired solution. 

This is due to the fact that in the selected area there 

are no areas that satisfy the constraint condition, or 

such areas are located far from each other. 

In other cases, the smallness of the territory 

leads to the fact that the border is not used (moves 

quickly) at the border point. Increasing the size of 

the area increases the choice. 

By increasing the area size by (470)×(423) 

squares, it was possible to reach the target point 

with the parameter values adopted in variant I (Fig. 

3a). Different results were obtained even when the 

height restrictions in this variant were taken as in 

variant I (Fig. 3a).  

With an increase in the terrain size (1276)×(423), 

it was possible to determine the desired trajectory 

even in the presence of a high-mountain massif in 

the territory (yellow spotted areas, Fig. 3b). 

 

 

(a) 

 

(b) 

Fig. 3. Result of reports performed according to variant III 
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Fig. 4. Result of reports performed according to variant IV 

 

Fig. 5. Selecting the desired route for a (50)*(50) sized area considering the height, smoothness parameter 

and target desire 

 

Fig. 6. Selecting the desired route for a (450) * (423 sized area considering the height, smoothness parameter 

and target desire 

3.4. Variant IV 

In this variant, the selection restrictions 

imposed on neighboring cells are removed, that is, 

when choosing the next cell, not only forward 

movement is taken into account, but also 

movement in other directions. Throughout all 

iterations of the algorithm, the ants continue to 

move mainly due to changes in height restrictions. 
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Cases of reaching the target point were 

observed despite the small size of the area. Based 

on this approach, the results obtained by changing 

the parameters are shown in several versions in 

Fig. 4. As can be seen in the picture, when there is 

no forward movement restriction, there are more 

possibilities than in the presence of this restriction. 

The effect of the altitude limit remains the same as 

in previous variants. When the constraint is 

completely removed (shown by the black line), the 

trajectory is close to a straight line, and as the 

constraint increases, the calculated trajectory will 

deviate more and more from this line. 

3.5. Variant V 

All previous variants take into account the 

restrictions imposed by altitude above sea level. From 

numerous calculation variants it is known that a 

positive solution to the problem directly depends on 

the relief parameters. In this variant, in addition to 

height, the smoothness parameter and target 

aspiration are taken into account, as in formula (1). 

To ensure that optimality conditions are met, the 

number of ants is halved, labeled as target ants and 

source ants, and launched oppositely from the source 

and target points, respectively. At each iteration, the 

trajectories of each ant species are combined into one 

trajectory, noting when the target and source ants 

meet, and the process continues. The shortest 

distances along the obtained general trajectories are 

marked. Calculations were carried out for areas with 

the number of squares (50) * (50) (Fig. 5) and (450) * 

(423) (Fig. 6). Thus, at each subsequent iteration, route 

trajectories are determined in compliance with this 

principle. Finally, among the mentioned trajectories, 

the required routes are selected according to the 

minimum length and height (Fig. 6). 

4. Conclusions 

An improved ant swarm algorithm is proposed, 

aimed at determining the desired UAV trajectory 

in difficult terrain. In difficult terrain conditions, a 

new type of terrain condition function is proposed 

that includes height, as well as smoothness and 

target desired value parameters. 

The analysis and experiment results show that 

the improved ant swarm algorithm can effectively 

solve the global problem of optimizing the 

trajectory of aircraft in complex terrain. In this 

article, multivariate computational experiments 

were carried out to determine and optimize the 

desired flight path of an aircraft in difficult terrain 

conditions. 

Experiments conducted in complex 

environments of varying terrain and size, 

simulated by 2D-H terrain maps, have shown that 

the trajectory planned by the algorithm produces 

different results in terms of smoothness, elevation 

change, length, and target aspiration parameters. 

This algorithm design is more adaptable and 

allows for better trajectory planning, especially on 

more complex and larger maps. 

It has been determined that taking into account 

the features of the relief cannot solve the problem 

in small areas. Relaxing the height requirements or 

increasing the physical size of the area may result 

in finding the desired path between source and 

target, but in practical situations relaxing these 

requirements is not always possible. 

In difficult terrain conditions, by including the 

parameters of height, ride and target aspiration, the 

desired trajectory can be determined, which allows 

a positive solution to the problem, but in most cases 

it was necessary to stop the iterations before 

reaching the target point. To achieve a normal 

solution to the problem under any terrain 

conditions, it was proposed to divide the ants into 

two parts and release them from the source and 

target points. Analysis of the results of the solutions 

obtained showed that, despite the lack of a solution 

in cases where the ants were released only from the 

source, it was possible to determine the desired 

trajectory when released from two points. 
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