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 A B S T R A C T  

In recent decades, information technology has been integrated into industrial control systems (ICS). At the same 

time, there was a connection of the ICS to the Internet and a transition to cloud computing. Consequently, new 

vulnerabilities and threats to sophisticated cyberattacks have emerged that create significant risks for the 

cybersecurity of ICS, and the old security model based on the isolation of ICS is no longer able to ensure their 

cybersecurity. This situation makes it very important to intellectualize the cybersecurity of ICS, for which 

machine learning (ML) methods are used. The use of ML methods will make it possible to detect cybersecurity 

problems of ICS at an early stage, as well as eliminate their consequences without real damage. This paper 

discusses the issues of ICS intrusion detection based on ML methods. The work can help in the choice of ML 

methods for solving anomaly detection problems of ICS. 

 

1. Introduction 

Industrial control systems (ICS) are part of 

modern critical infrastructures. ICS are 

specialized information systems that significantly 

differ from traditional information systems 

available in the field of information technology 

(IT). There are such types of ICS as distributed 

control systems (DCS), supervisory control and 

data acquisition (SCADA), industrial automation 

system (IAS), industrial automation and control 

systems (IACS). ICS mainly used in industries 

such as electrical networks, water supply and 

wastewater treatment, oil and gas processing and 

transportation, nuclear and power plants, etc. 

Most of the ICS in use today designed many 

years ago for functionality, not safety, and had 

different requirements and purposes. In most 

cases, ICS were physically isolated from external 

networks and based on special hardware, 

software, and communication protocols, such as 

Modbus RTU, Modbus TCP, or various wireless 

technologies such as Wi-Fi, Z-Wave, Zigbee, etc. 

These protocols had basic error detection and 

correction capabilities without regard to security. 

At the same time, the security of the ICS mainly 

consisted of physical protection of access to the 

network and consoles of the system managers. 

However, modern ICS must have such functional 

characteristics as the need for real-time response 

and extreme high availability, predictability, 

reliability, and distributed intelligence. For this, 

advanced computing, communication and 

Internet technologies have integrated into the ICS 

to meet more customer requirements, such as 

mobility, data analysis, expandability, etc. 

Connecting the ICS to the Internet and moving 

to cloud computing have provided a number of 

benefits such as scalability, cost-effectiveness and 

flexibility. However, the connection to the Internet 

and the transition to cloud computing makes ICS 

open to the outside world. As a result, new 

vulnerabilities and threats for a number of cyber-
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attacks appear in the ICS, which create significant 

risks, for example, for the health and life of people, 

the environment, production, the national 

economy, etc. Therefore, cyber security is 

becoming one of the most important problems of 

ICS due to the high cost of cyber-attacks. 

The sophistication of attacks on ICS revealed 

their vulnerabilities and inherent security flaws 

(Van Der Zwan, 2010, Brenner, 2013). This has led 

to the fact that the old ICS security model based on 

network isolation is no longer able to ensure their 

security. However, despite the recent increase in 

the frequency and sophistication of cyberattacks 

against ICS, there have been a small number of 

openly documented cyberattacks. Consequently, 

the lack of enough attack patterns to determine the 

level of risk makes it difficult to understand the 

threat environment and prioritize security. This 

situation makes it very important to intellectualize 

the cybersecurity of ICS, for which machine 

learning (ML) methods are used. The use of ML 

methods will detect cybersecurity problems of ICS 

at an early stage, as well as eliminate their 

consequences without real damage. ML techniques 

can analyze large amounts of data efficiently, 

accurately, and quickly. Using the threat history, a 

ML-based security system can learn about past 

threats and use that knowledge to predict similar 

attacks in the future. 

The purpose of this work is to analyze 

approaches to ensuring the cybersecurity of ICS 

based on the methods of ML. The work can help 

solve the problems of choosing methods of ML for 

ensuring cybersecurity ICS used in various 

industries. 

2. Machine learning methods 

ML provides an opportunity to discover and 

formalize the principles behind data, learn from 

data, and improve from experience. The main 

goals of ML are forecasting, clustering, extraction 

of association rules and decision support based on 

the information received. 

ML methods can be classified as follows: 

supervised learning  classification; unsupervised 

learning  clustering; reinforcement learning 

(Helm et al., 2020). 

The supervised learning algorithm uses a 

training dataset (examples) in which the data has 

known attributes and associated responses 

representing a class of data. Using the training set, 

the algorithm learns patterns in the data and 

generalizes them to correctly classify new inputs. 

Several methods of supervised learning are 

available, such as k-nearest neighbors, regression 

(linear, logistic, etc.), Bayesian (Naive Bayes, 

Bayesian networks), decision trees, artificial 

neural networks, rule induction, support vector 

machines (SVM), and discriminant analysis. 

In an unsupervised learning algorithm, there 

are no responses associated with data attributes, 

and the algorithm identifies similarities between 

inputs and classifies them based on those 

similarities. The partially supervised learning 

algorithm is trained on a training dataset that 

contains both labeled (class-specific data) and 

unlabeled (non-class-specific data). This type of 

training is desirable when labels are missing or 

insufficient in the training data. Examples of 

unsupervised learning methods used to detect 

cyberattacks on ICS are isolation forest, single 

class SVM, and autoencoders such as sparse 

autoencoders, partial autoencoders, variational 

autoencoders, and fair clustering. These 

algorithms are trained only on normal data and 

any deviations or anomalies detected will be 

classified as "attacks". 

In reinforcement learning, the algorithm 

receives feedback information about errors, but 

does not receive instructions to correct these 

errors, and therefore the algorithm is constantly 

learning using the trial and error method. 

Reinforcement learning involves training an 

agent to interact with an environment, which 

takes actions to maximize cumulative rewards 

over time. Reinforcement learning algorithms use 

exploration and exploitation strategies to find 

optimal policies. Notable examples include Q-

learning, deep Q-networks, and policy gradient 

methods. 

In many applications, the amount of data 

generated is extremely large, so deep learning 

(DL) techniques, also known as deep neural 

learning, are used. One of the advantages of DL 

over ML is its high performance. This is achieved 

by building larger neural networks and training 

them on large amounts of data. Like ML methods, 

DL methods support supervised learning, 

unsupervised learning, and reinforcement 

learning. DL methods that are commonly used in 

the field of cybersecurity are: feed-forward neural 
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networks, convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), deep 

belief networks, multilevel autoencoders, 

generative adversarial networks, restricted 

Boltzmann machines, and ensemble of DL 

networks (Truong et al., 2020). DL models, such 

as convolutional neural networks and recurrent 

neural networks, are capable of automatically 

learning hierarchical representations from raw 

data. DL has proven to be effective in detecting 

malware and network intrusions. 

ML techniques have broader applications in 

security, such as spam filtering, network anomaly 

analysis, botnet detection, and identification of 

user behavior anomalies. 

ML algorithms and techniques can be applied 

to various aspects of ICS cybersecurity to enhance 

threat detection, anomaly detection, intrusion 

detection, etc. 

IDSs can detect and identify potential 

intrusions in ICS networks. ML algorithms can 

analyze network traffic, system logs, and other 

data sources to identify patterns and anomalies 

associated with malicious activities. For example, 

SVM can be trained on labeled data consisting of 

normal and attack instances to classify incoming 

network traffic as either normal or malicious 

(Ghanem et al., 2017). This approach can help in 

detecting known attacks and even identifying 

unknown or zero-day attacks. 

For anomaly detection, ICS environments can 

utilize ML techniques (Mubarak et al., 2021). By 

building models that learn the normal behavior of 

the system, any deviation from this behavior can 

be flagged as an anomaly. One approach is to use  

k-means algorithm to identify normal patterns or 

clusters in the data. This method can detect new 

or evolving threats that do not match known 

attack signatures. 

ML algorithms can analyze the behavior of 

ICS components and users to detect suspicious 

activities or deviations from normal behavior 

(Koay et al., 2022)). For example, long short-term 

memory (LSTM) networks can be employed to 

model the sequential behavior of users or control 

system operations. These models can learn 

normal patterns of user behavior and identify any 

unusual or malicious actions in real-time. 

ML algorithms can identify potential risks 

and vulnerabilities in ICS environments. They can 

analyzing data from public sources, security 

feeds, or internal incident reports. Natural 

Language Processing techniques can be applied 

to extract relevant information from textual 

sources, such as security advisories or 

vulnerability databases. By analyzing this 

information, ML algorithms can prioritize threats, 

assess their impact on ICS systems, and aid in 

proactive defense measures. 

ML algorithms can assist in detecting and 

classifying malware targeting ICS environments. 

By analyzing malware samples, extracting 

features, and training models on known malware 

instances, machine learning can aid in the 

detection of new malware. CNNs or RNNs 

techniques can be employed to analyze the 

structure and behavior of malware, enabling 

automated classification and identification. 

3. ICS cybersecurity threats analysis  

Traditionally, ICS have designed with 

reliability and safety in mind (Russel, 2015). 

However, cybersecurity and mutual 

authentication of components were not taken into 

account in the design and operation of the ICS.  

Because, ICS were based on specialized 

equipment, codes and standard protocols and 

worked in a closed environment without 

interacting with other systems. Thus, safe and 

reliable ICS protocols were not created and 

cryptographic protections were not used. 

However, the transition of ICS to innovative 

information technologies and the use of networks 

have led to new realities in the field of 

cybersecurity. There are new threats and risks in 

the cybersecurity of ICS due to existing 

vulnerabilities. Therefore, the analysis of threats 

and vulnerabilities is a mandatory step that 

should precede decisions related to the 

cybersecurity of ICS. ICSs threat identification 

play an important role in determining the most 

appropriate countermeasures to mitigate their 

effects. Information technology and operational 

technology threats and vulnerabilities analysis is 

crucial to ensure a holistic approach to 

cybersecurity in ICS environments. 

Threats to the security of ICS can come from 

several sources, such as hostile countries, terrorist 

groups, competitors, contractors, and disgruntled 

employees. In addition, the threats of human 

error malfunction and failure of equipment and 
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networks must considered. These threats and 

threat actors can classified as external and 

internal. 

External threat actors include foreign 

intelligence services, hackers and hacktivists, 

industrial spies, cyberterrorists, and organized 

crime. These actors, for political, economic or 

reputational reasons, may carry out attacks to 

cyberespionage or disrupt technological 

processes. 

Internal threats include network and 

operational problems, disgruntled employees and 

careless or poorly trained staff, etc. Internal 

threats are no less dangerous than external ones 

because some of these threats are beyond the 

organization's control, such as network and 

hardware misconfigurations. From a personnel 

perspective, insider threat actors, whether 

malicious or not, often has very deep knowledge 

and extensive access to an organization's 

infrastructure. 

ICS security threats can be classified as 

follows (Van Der Zwan, 2010): organizational 

threats; architectural and technological threats; 

threats related to networks and the 

telecommunications system; human factor. 

Organizational threats include threats to 

business objectives using the organizational 

aspects of the ICS and cover levels such as 

executive, information security administrator, 

cultural differences between IT and process 

control departments, IT security standards, etc. 

At the executive level, risk management 

carried out for the organization's business goals. 

The executive level understands the 

organization's core business objectives, but the 

focus on business objectives causes a lack of 

interest in the core technological aspects of 

processes that lie outside of optimal performance 

and operational safety. The main business 

processes are controlled by ICS, which create a set 

of threats associated with new technologies, do 

not attract managers, since they concern the 

functional area, and not business and profit. 

Information security administrators often fail to 

identify SCADA threats and only focus on IT 

related issues as they can look like IT threats. 

The cultures of the IT department and the 

process control department are often very 

different. ICS primarily focuses on the availability, 

visibility, operability of the processes controlled by 

the ICS, as well as the efficiency and safety of the 

processes. Cybersecurity, including aspects of 

integrity and confidentiality, is of less concern. 

Unlike the process control department, the IT 

department prioritizes confidentiality, followed by 

integrity and availability, which creates 

misunderstandings between departments. 

Strict adherence to IT-based security 

standards in ICS can pose a threat to business 

objectives. The ISO27001 standard is a widely 

recognized information security management 

standard. This standard is accompanied by the 

ISO27002:2013 standard, which contains a set of 

information security controls divided into topics 

such as access control, communication security, 

physical security, human resource security, etc. 

These standards originally developed for offices, 

but the standard ISO/IEC 27001:2013 can applied 

to both IT and ICS. However, the organizational 

threat is that the IT department mandates strict 

application of the full set of IT controls to the ICS. 

While the ISO/IEC 27002:2013 security controls 

are generic and applicable to all types of 

information systems and applications, the 

implementation of certain security controls in an 

industrial ICS may not be effective. 

Architectural and technological threats 

include threats related to aging technologies, new 

functionality of old systems, protocols, etc. 

In large ICS, due to the incompatibility of old 

technologies with new technologies, as well as 

unintentional misconfigurations of new 

functions, a number of threats can arise. 

However, some of these threats may occur in 

small ICS. However, mitigating most technology-

related threats does not require technological 

changes, but organizational measures, as well as 

changes in the culture of manufacturers and 

system integrators. 

Since, ICS components have a long lifespan, 

over time their processing capacity and memory 

capacity can be too limited to run new 

applications. Working with such components 

makes it difficult to implement and/or activate 

cryptographic protection modules that require 

processor and memory power. Moreover, many 

components of the ICS and application software 

developed at a time when only a limited circle of 

people could work in the ICS. The aging of ICS 

components entails another threat related to the 

fact that manufacturers may no longer exist or 
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may not be able to supply spare parts. 

Another threat to SCADA is the factory 

default passwords built into the hardware and 

software. Security options disabled by default, 

meaning there is no way to change these 

passwords during the installation of SCADA 

components. Thus, the installation of components 

in the ICS is unsafe and security risks arise. For 

example, the Stuxnet worm abused such a strong 

password in the Siemens WinCC SCADA product 

that controlled the uranium enrichment 

centrifuges at Nathan, Iran (Nicolas, 2011). 

Another threat is that authentication information, 

including passwords, is often unencrypted and 

can discovered by cyber attackers in plain text in 

memory or intercepted in messages. 

Threats associated with the new functionality 

of old systems arise because many ICS developed 

in the sixties and based on transistors (Russel, 

2015). Replacement components for installations 

based on more technologies that are modern and 

have compatible interfaces. Manufacturers add 

new features to components, for example, PLCs 

can now contain a web server that offers easy 

access to PLC functions, a built-in email client, 

and an SNMP agent. However, replacing old 

components without proper configuration may 

result in unauthorized connection to the ICS. 

In the specifications of the ICS protocols, 

security issues taken into account in the 

conditions of ambiguity and lack of knowledge 

about the technology and the closeness of the ICS. 

Therefore, many ICS protocols do not protect the 

contents of protocol messages from man-in-the-

middle attacks and do not prescribe actions when 

errors detected. Various studies have analyzed 

the safety of SCADA protocols (Fovino, 2014). 

These studies have shown that SCADA protocols 

are not secure and resistant to cyberattacks. 

Insecure protocols create threats to ICS and can 

exploited by hackers and trojans. However, the 

implementations of the ICS protocols are not 

reliable. 

Network and telecommunications threats 

include specific threats to ICS associated with the 

network technologies used, such as TCP/IP and 

WiFi, etc. Most of the threats to SCADA in this 

area are associated with weak protocols and 

protocol implementations, as well as the use of 

insecure functions that use wireless 

communication. 

Currently, there is a business need to transfer 

operational data from ICS to business 

applications. In this case, the use of firewalls is 

required to control the flow of information from 

the ICS to business applications. At the same time, 

a threat appears, which lies in the fact that these 

connections can open the way for unauthorized 

access by intruders and malicious programs to the 

ICS. Because not all firewalls support specific 

SCADA protocols (Igure et al., 2006). However, 

the use of wireless communications in PCS will 

create new threats (Reaves and Morris, 2012). The 

main threat is that a wireless connection is 

established, for example, to connect devices, 

without any planning and guarantees for its 

maintenance in the future. 

Usually, an operator, maintenance engineers, 

etc. remote access to the ICS is required to ensure 

the effectiveness of its management. To this end, 

various methods of access via the Internet are 

used. Most organizations use virtual private 

network technology to connect remotely to an 

organization's corporate network. Further, 

authorized users can connect to the ICS from the 

corporate network. 

Some organizations allow a direct dial-up 

connection to their PCS and secure access to the 

internal network requires at least two-factor 

authentication and strong authorization controls. 

In this case, a combined organizational and 

technical threat may appear which may be 

because such accesses  can not be controlled and 

unauthorized access to the ICS may by obtained. 

One of the threats to the ICS is the human 

factor and can create very serious threats. Because 

operators, control, systems and maintenance 

engineers are very knowledgeable about the 

principles of operation of the components of the 

ICS and have authorized access to the ICS. At the 

same time, people themselves are subject to cyber-

attacks, and there is the threat of disgruntled 

(former) employees. In addition, personal 

equipment connected to the SCADA component, 

such as USB drives may carry malware. For 

example, the Stuxnet virus penetrated highly 

secure connections between the IT domains and 

the ICS at the nuclear enrichment plant in Nathan, 

Iran, through malware on a USB drive. According 

to several analysis reports, a third party 

maintenance engineer delivered the USB stick 

(Langner, 2011). 
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Advanced Persistent Threats are 

sophisticated, long-term attacks aimed at gaining 

unauthorized access to ICS networks. APTs 

involve multiple attack vectors and are typically 

conducted by well-resourced and motivated 

adversaries. Some examples of advanced 

persistent threats include: Sykipot APT malware 

family, GhostNet , Stuxnet worm, APT28, APT29, 

APT34, APT37, etc (Kanade, 2021). 

Zero-day vulnerabilities are unknown 

software vulnerabilities that have not been 

patched by the vendor. Attackers who discover 

these vulnerabilities can exploit them to gain 

unauthorized access to ICS systems. 

The proliferation of Internet of Things (IoT) 

devices in ICS environments has introduced new 

cybersecurity risks. Insecurely implemented or 

unpatched IoT devices can serve as access points 

for attackers to gain access to ICS networks 

(Dhirani et al., 2021). 

Social engineering attacks exploit human 

psychology to deceive individuals and gain 

unauthorized access to ICS systems. Phishing, 

spear-phishing, and impersonation tactics are 

commonly used. In 2015, a spear-phishing attack 

targeted a Ukrainian power company, leading to 

a significant power outage affecting hundreds of 

thousands of people. (Case, 2016). 

Human error and lack of cybersecurity 

awareness can introduce vulnerabilities into ICS 

environments. Employees may inadvertently 

click on malicious links, fall victim to phishing 

attacks, or mishandle sensitive information. 

Whether through intentional malicious actions or 

inadvertent mistakes, insiders with privileged 

access can cause disruptions or compromise 

system integrity. 

The increasing use of wireless technologies in 

ICS introduces additional risks. Weakly secured 

or unencrypted wireless communications can be 

intercepted or manipulated, compromising the 

integrity and availability of ICS systems. 

Insufficient network segmentation in ICS 

environments can allow attackers to move 

through systems once they gain initial access. This 

can lead to widespread compromise and control 

system disruptions. 

The adoption of cloud-based services in ICS 

introduces new security challenges. Inadequate 

security configurations, shared infrastructure 

vulnerabilities, or compromised credentials can 

result in unauthorized access to ICS data and 

control systems. 

The human-operator interface in ICS 

environments can be exploited to gain 

unauthorized access or manipulate control 

systems. Social engineering and phishing attacks 

targeting operators or system administrators have 

been successful in compromising ICS networks. 

Many ICS systems operate on legacy software 

and lack regular patching or system updates. This 

leaves them vulnerable to known exploits. 

To protect against these threats, organizations 

should implement a defense-in-depth approach, 

including network segmentation, strong access 

controls, regular patch management, intrusion 

detection systems, employee training, etc. 

4. ICS cyber-attacks analysis 

Today, ICS are the target of various 

cyberattacks that include network breaches, data 

theft, denial-of-service (DoS) attacks, privilege 

escalation, and so on. The presence of threats to 

the ICS makes specific cyber attacks possible. The 

nature and effectiveness of cyberattacks on ICS 

are largely determined by security flaws, as well 

as the architecture and technology of ICS. The 

main weakness in existing SCADA security 

solutions is the emphasis on process security 

while ignoring other critical issues such as people 

and processes, which is inconsistent with new 

security threats and attack trends. Typically, a 

one-sided security strategy focuses more on ICS , 

such as SCADA systems, that is, it contains 

industry solutions rather than general security 

solutions. However, due to the general lack of 

SCADA security, various critical infrastructure 

incidents can occur in controlled SCADA systems. 

The consequences of successful attacks on 

networks and SCADA systems are potentially 

very serious and serious efforts are required to 

mitigate their consequences. Because, ICS  are 

integral parts of the most important national 

infrastructures (energy, oil and gas industry, 

transport, aerospace industry, water system, 

communication system, production, etc.). Taking 

the example of manufacturing control systems, 

potential threats or attacks can take many forms. 

Attacks can include blocking or delaying the flow 

of service information through production 

control networks to disrupt critical production 
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operations, illegal changes to maintenance 

instructions, production commands, or alarm 

thresholds. As a result, they can disable or stop 

production lines or equipment, create harmful 

environmental impacts or endanger human life. 

Incorrect information can also be sent to system 

operators, either to mask unauthorized changes 

or to influence inappropriate operator responses 

to cause disruptive impacts. Modification of the 

ICS software or configuration settings, as well as 

malware infection, can be detrimental to product 

quality or production. Modern malware can 

determine the structure of physical devices and 

use this information to achieve the goal of 

attackers. 

In (Zakarya et al., 2015), the authors divide 

SCADA attacks into three main categories such as 

accessibility attacks, confidentiality attacks, and 

integrity attacks. 

Availability attacks aim to deny access to 

system assets as well as operations. In ICS, this 

refers to denying access to all system components, 

such as ICS assets; operator workstations, 

engineering stations, communication system, as 

well as control devices. 

Integrity attacks aimed at illegally changing 

the content of a message or the content of system 

resources. In ICS, this means changing received 

messages or control commands passing through 

three system levels, as well as changing the 

contents of databases or control programs in the 

PLC (Programmable Logic Controller). 

Privacy attacks aimed at obtaining 

unauthorized data or resources on the SCADA 

network, such as passwords, PLC configurations, 

etc. The obtained data can be used to reproduce 

some of the ICS operations. 

Cyber-attacks on ICS carried out in various 

forms and modes. The authors in (Pasqualetti et 

al., 2015) identified four broad classifications of 

attacks aimed at ICS. These include deception 

attacks, denial-of-service attacks (DoS attacks), 

replay attacks, and covert attacks: 

 Deception attacks aimed at violating the 

integrity of control packets or data and are 

usually performed by changing the behavior of 

nodes, equipment, sensors and actuators. An 

unconventional type of deception attack that can 

cause significant damage to an ICS called a decoy 

attack (Liu et al., 2011).  

 Denial-of-service attacks aimed at 

compromising the availability of resources, for 

example, by blocking the communication 

channel, connecting device and SCADA nodes. 

The same approach called in (Ashok et al, 2014) a 

“timing attack”, which works by saturating the 

communication network with data packets, 

which causes a decrease in network speed and a 

possible complete shutdown. 

 Replay attacks performed by recording 

sensor readings over a period and repeating such 

recorded readings to the system. Research has 

shown that such a deliberate anomaly can be 

corrected by inserting random signals unknown 

to attackers into the system (Ashok et al., 2014), 

(Pasqualetti et al, 2013). 

 In covert attacks, covert agents can 

change the behavior of a physical object, while 

remaining unnoticed by the controller (Smith, 

2011).  

The following are the most sophisticated 

attacks on ICS identified by researchers and 

security experts: 

 Stuxnet is a Microsoft Windows 

computer worm discovered in July 2010 and 

designed specifically for industrial software and 

equipment of the nuclear enrichment plant in 

Nathan (Iran) (Nicolas et al., 2013). The worm 

initially spreads indiscriminately, but includes a 

highly specialized malware payload designed to 

attack only certain SCADA systems configured to 

control and monitor a manufacturing process. 

Stuxnet exploited several vulnerabilities in the 

runtime environment as well as in the 

implementation of the SCADA protocol (Bonnie 

and Sastry, 2010). 

 Slammer is a Microsoft SQL Server worm 

that was discovered in 2010. The Nuclear 

Regulatory Commission has confirmed that the 

Slammer worm infected a private computer 

network at a nuclear power plant in Ohio, 

shutting down the safety monitoring system for 

nearly five hours. In addition, the plant's process 

computer failed and it took about six hours for it 

to become available again. Slammer has also 

reportedly affected communications in the 

control networks of at least five other utilities by 

spreading so quickly. 
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 Havex malware is malicious software that 

was discovered in 2013. It was designed to 

monitor systems that control industrial 

equipment and was a remote access trojan that 

allowed hackers to control computers remotely. 

Havex has targeted thousands of European, and 

Canadian companies, especially in the energy and 

petrochemical industries and the US. 

 Shamoon is malware. This malware was 

targeted at Saudi Aramco refineries, which is the 

8th largest oil refinery in the world. The malware 

targeted the system's Master Boot Records (MBR), 

partition tables, and other arbitrary data files. 

This resulted in systems becoming unusable 

(Keith et al., 2014). 

 Triton malware was first discovered in 2017 

and targeted oil company Petro Rabigh from Saudi 

Arabia. It could cause massive damage, including 

marine pollution, a surge in gasoline prices, and 

even death from the explosion. This program 

reprograms the controllers of the Triconex 

automated security system. 

5. ICS intrusion detection based on ML 

methods 

Over the past decades, the number of cyber 

attacks on ICS has increased and become more 

sophisticated. Under these conditions, the 

traditional methods of ensuring the security of 

ICS are insufficient and, as a rule, allow detecting 

certain types of threats and attacks. However, the 

nature of existing threats and attacks have 

changed, making them unpredictable. Attackers 

are using new methods and tools to attack and 

compromise systems and steal data. In addition, 

in large and complex systems, new vulnerabilities 

appear that are difficult to detect. At the same 

time, conventional methods for detecting 

vulnerabilities react to events only after the 

vulnerability has been exploited. 

Recently, ML methods have been developing 

rapidly and widely used to ensure the 

cybersecurity of ICS. There are many works in the 

literature devoted to the use of ML methods to 

ensure the cybersecurity of ICS (Jiang and Zhao, 

2019, Hemavati Er. and Aparna R, 2019). ML 

methods can provide effective tools for detecting 

vulnerabilities, malware, network intrusions, 

phishing and spam, attack detection as well as 

data leakage, detection and accurate prediction of 

security incidents, etc. In addition, ML methods 

are able to predict problems through predictive 

analysis based on previous decisions. ML 

methods are also capable of analyzing large 

volumes of data quickly, efficiently, and 

accurately. Therefore, the use of ML methods 

quickly and accurately identifies cyber threats to 

ICS , which will greatly increase the effectiveness 

of responding to threats. In addition, the use of 

ML methods makes it possible to predict possible 

cyber risks and identify potentially dangerous 

actions. By analyzing all kinds of previous 

attacks, machines can predict previously 

unknown attacks. Consequently, it will improve 

the efficiency of prioritization for ensuring 

cybersecurity, as well as the improvement of 

policies and procedures aimed at improving the 

overall cyber resilience of ICS. 

Anomaly detection creates models for normal 

behavior and any behavior that deviates from the 

model can be detected and treated as an intrusion. 

Traditionally, intrusion detection has mainly 

used predefined models and trained to detect 

specific cyber-attacks. However, this intrusion 

detection models do not take into account the 

imbalance of datasets, which leads to low 

accuracy in detecting cyber-attacks and a high 

level of false positives. 

There are three types of intrusion detection 

model: signature-based, specification-based, and 

behavior-based. When using the signature-based 

model, predefined attack pattern dictionaries are 

required. It detects an intrusion if any detected 

pattern matches one or more predefined attack 

patterns (Gao and Morris, 2014). While this 

approach maintains a low false positive rate, it 

cannot detect zero-day attacks. However, it is 

often difficult to compile a comprehensive 

dictionary of attack signatures in complex 

physical processes. 

Specification-based intrusion detection 

models use a mathematical model to determine 

the normal functioning of the physical process in 

question. An anomaly exists when a process 

deviates from the prediction of a predetermined 

model (Mitchell and Chen, 2015). Such models 

developed with the help of specialists and 

designers of the enterprise. Although experts may 

have knowledge of the physical processes, there 

are problems associated with the aging of the 

physical system, the inaccuracies that may exist in 
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operating manuals, and the interpretation of 

process behavior. 

Behavior-based intrusion detection models 

are based on physical system behavior data. 

Based on the collected data, the models trained on 

the normal and abnormal behavior of the process. 

This approach is preferable to incorrect supplier 

specifications because the model trained on 

empirical data (Junejo. 2020) and thus helps to 

detect incorrect supplier specifications. 

There are some problems when using 

intrusion detection models in the ICS, which are 

associated with the lack of attack patterns on the 

ICS, the heterogeneity of the physical processes of 

the ICS, etc. Because there are no templates for 

attacks on the ICS due to the difficulty of 

compiling exhaustive dictionaries of attack 

signatures in the complex physical processes of 

the ICS. Therefore, it becomes difficult to detect 

some attacks, such as zero-day attacks. However, 

the physical processes of ICS are heterogeneous 

because the components, size and functionality of 

each process differ from each other. Therefore, the 

detection of attacks in heterogeneous physical 

processes controlled by ICS is a difficult task (Hu 

et al., 2018). 

Modern intrusion detection models use ML 

techniques for pattern recognition to detect 

dangerous activities that are anomalous for a 

particular system (Pinto et al., 2023). For example, 

ML methods are widely implemented to detect 

and prevent anomalies in SCADA systems. 

Because, SCADA systems have regular 

communication patterns, that can be analyzed by 

ML methods. In (Yasakethu and Jiang, 2013) for 

the protection of SCADA, an intrusion detection 

system (IDS) based on ML methods were 

proposed. The authors compare rule-based 

methods, artificial neural networks, hidden 

Markov models and support vector machines. In 

(Maglaras and Jiang, 2014), the authors propose 

an OCSVM (One-Class Support Vector Machine) 

intrusion detection model based on unsupervised 

learning methods that does not use any 

information about the anomaly for learning. The 

authors in (Zhang et al, 2013) propose a SCADA 

intrusion detection model based on a self-learning 

semi-supervised OCSVM (S2 OCSVM) and 

demonstrate that S2 OCSVM can improve 

detection accuracy. In (Stefanidis and Voyiatzis, 

2016), for detecting intrusions in ICS, especially in 

SCADA systems, interconnected using TCP/IP, an 

IDS architecture based on the Hidden Markov 

Model (HMM) algorithm was proposed. 

However, despite the popularity of using ML 

in intrusion detection models, there are not 

enough standard datasets for training and testing 

these models. This leads to the impossibility of 

developing reliable ML models for detecting 

anomalies in ICS. Datasets play an important role 

in ML and determine learning outcomes. Having 

a good dataset is a guarantee of successful 

training of an ML model. Most of the available 

data sets, especially in the context of SCADA, do 

not contain all types of cyber-attacks, so it is 

difficult to assess the performance and accuracy 

of an intrusion detection model. 

Some researchers have tried to create datasets 

for anomaly detection in SCADA. Oak Ridge 

National Laboratories created three sets of 

transmission system data (Pan et al., 2015, Pan et 

al., 2015). These datasets contain many 

measurements including normal behavior, attack 

behavior, log data from Snort and the relay 

network. In (Goh et al., 2016), the authors collected 

datasets from a water treatment system that may 

represent a real industrial water treatment plant. 

The data set contains the physical properties and 

network traffic during the attack and in normal 

mode. In (Morris et al., 2015) created a dataset from 

a gas pipeline that contains data from normal 

activities and more than 30 different attacks. 

Simulators are used in (Antoine and José, 2016) to 

set up an electrical network and create malicious 

traffic with real attack tools, although the data set 

cannot reproduce a real industrial control network. 

These datasets can be a good basis for testing and 

evaluating anomaly detection models and 

algorithms. 

Intrusion detection methods based on 

traditional ML algorithms such as SVM  decision 

tree, NN (Neural Network), etc., cannot 

effectively deal with massive, multi-dimensional, 

time-related network traffic data in an ICS. To 

solve this problem, the work (Chen et al., 2019) 

proposes a method for detecting intrusions in 

ICSs based on a recurrent neural network. The 

authors use the update gate and reset gate of the 

Gated Recurrent Unit to store information about 

the data in the time dimension, which made it 

possible to explore the features of the data and to 

optimize the gradient learning process of the 
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neural network for which used Adam algorithm. 

Comparative experiments were carried out with 

intrusion detection methods based on SVM 

algorithms, decision tree, NN, RNN, LSTM, etc. 

The results showed that the proposed method has 

a higher classification accuracy than SVM, 

decision tree, NN, and RNN, and the accuracy is 

the same as LSTM, but the training time is 

reduced. 

Most of the existing classification techniques 

are hard to deploy in a real environment since 

they cannot deal with the open set problem. In 

(Wang et al., 2021) proposed NN based-

methodology to solve this problem, the openmax 

layer is used instead of the traditional softmax 

layer, which overcomes the limitations of 

softmax, allowing NN to detect unknown attack 

classes. For training new loss function termed 

center loss is implemented to improve detection 

ability. The NN model learns better feature 

representations with the combined supervision of 

center loss and softmax loss. The NN was 

evaluated on NF-BoT-IoT-v2 and Gas Pipeline 

datasets. The experiments show that the proposed 

method is comparable with the current algorithm 

in terms of detecting unknown classes and has 

better overall classification performance. 

Most IDS do not consider the imbalanced 

nature of ICS datasets, thus suffering from low 

accuracy and high False Positive Rates when 

being put to use. (Cao et al., 2022) proposes the 

NCO–double-layer DIFF_RF–OPFYTHON 

intrusion detection method for ICS, which 

consists of NCO modules, double-layer DIFF_RF 

modules, and OPFYTHON modules. Detected 

traffic is divided into three categories by the 

double-layer DIFF_RF module: known attacks, 

unknown attacks, and normal traffic. The known 

attacks are classified into specific attacks by the 

OPFYTHON module according to the feature of 

attack traffic. The NCO module uses to improve 

the model input and enhance the accuracy of the 

model. The results show that the proposed 

method outperforms traditional intrusion 

detection methods, such as XGboost and SVM. 

The accuracy of the used dataset reaches 98.13%. 

The detection rates for unknown attacks and 

known attacks reach 98.21% and 95.1%, 

respectively. 

 

6. Conclusion 

The number of ICS cyber threats and their 

complexity is increasing significantly year by 

year. Under such conditions, ensuring cyber 

security of ICS is one of the main problems of 

national and international security. Therefore, it is 

necessary to improve the methods of ensuring the 

cybersecurity of ICS, which are currently used. 

The use of ML methods, in ensuring the 

cybersecurity of ICS is a new research area. ICS 

cybersecurity approaches based on ML methods 

are promising and show clear advantages over 

existing approaches. 

There are many ML methods in the literature, 

and the choice of ML methods to ensure the 

cybersecurity of ICS is an urgent task. The correct 

choice of ML methods for solving certain 

cybersecurity tasks of ICS depends on many 

criteria, including the type of system protected. 

This article analyzed approaches to ICS 

intrusion detection based on various methods of 

ML. The analysis carried out can help in the 

correct choice of ML methods for solving 

intrusion detection problems ICS, used in various 

industries. 
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