
Problems of Information Technology (2023), vol. 14, no. 2, 23-31

23

Software defect prediction using the machine learning methods

Tamilla A. Bayramova

Institute of Information Technology, B. Vahabzade str., 9A, AZ1141 Baku, Azerbaijan

tamilla@iit.science.az

 0000-0002-8377-3572

A R T I C L E I N F O

http://doi.org/10.25045/jpit.v14.i2.03

Article history:

Received 12 January 2023

Received in revised form 28 February 2023

Accepted 21 April 2023

Keywords:

Random Forest

Naive Bayes

Bagging

Boosting

Ensemble

Software defect prediction

 A B S T R A C T

Reliability of software systems is one of the main indicators of quality. Defects occurring

when developing software systems have a direct effect on reliability. Precise prediction

of defects in software systems helps software engineers to ensure the reliability of

software systems and to properly allocate resources for the trial process. The

development of an ensemble method by combining several classification methods

occupies one of the main places in research conducted in the field of error prediction in

software modules. This paper proposes a method based on the application of ensemble

training for defect detection. Here, a database obtained from PROMISE and GITHUB

software engineering registry is used to detect defects. Experiments are conducted using

Weka software. The prediction efficiency is evaluated based on F-measure and ROC-

area. As a result of experiments, the defect detection accuracy of the proposed method

is proven to be higher than that of individual machine learning methods.

1. Introduction

The rapid development of information

technologies has posed high demands on hardware

and software. Developing quality software systems

and meeting customer requirements is one of the

most important issues for the software industry.

Anyone using a software system should be

guaranteed that the system will operate at a certain

level of reliability. A precise assessment of

reliability gives both developers and users some

confidence about the successful operation of

software system. Currently, the development of

reliable software systems is one of the most urgent

problems, however time and budget constraints

create great problems in achieving this goal.

Furthermore, the complexity of software systems

continues to increase, which leads to an increase in

the number of defects in them. These defects are

mainly due to incorrect operation of the software

system or incorrect specification. One of the most

important and expensive processes in the

development of software systems is the detection

and correction of defects that may occur under

different conditions.

2. Prediction of software defects

Software trial is a key tool to ensure its

reliability, however it is impossible to detect all

defects in the testing process. Moreover, the testing

process requires huge effort, expense and

proficiency in the relevant field. The costs, time and

effort involved in security-critical software systems

increase even further. Therefore, the development

of a good testing strategy is one of the difficult

issues facing software engineers (Kazimov,.

Bayramova & Malikova, 2021).

14 (2)

2023

 Available online at www.jpit.az

https://orcid.org/0000-0002-8377-3572
http://doi.org/10.25045/jpit.v14.i2.03
http://doi.org/10.25045/jpit.v14.i2.03

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

24

Along with supporting the testing process,

software defect prediction methods play an

important role in developing more reliable software

products and speeding time for launching them on

the market. Software defect prediction is a model

developing process that will be used to detect

defective elements (modules or classes) in the early

stages of the software life cycle. As a result of the

classification of the modules, it is determined

whether it is defective or not. Modules classified as

defective are checked first and more rigorously in

the testing process, while those recognized as non-

defective are checked if time and resources remain

(Thota, Shajin & Rajesh, 2020). Software defect

prediction is referred to as a step in improving the

software system reliability and enables software

developers and testers to discover which modules

of the system are most disposed to defects. Careful

inspection of these modules during testing directly

affects the timely detection and elimination of

defects (Menzies et al, 2010). Forecasting leads to

reduced software testing costs, timely software

product development, and improved overall

quality (Kaur & Kaur, 2014).

Software defect prediction is the detection of

defective software modules with the application of

machine learning methods and is performed by two

strategies: regression and classification. Regression

methods aim to predict the number of defects in a

software system. Numerous studies have been

conducted in this area using a number of regression

models (Alsaeedi & Zubair Khan, 2019; Yan, Chen

& Guo, 2010; Rathore & Kumar, 2016; Rathore &

Kumar, 2017).

Classification methods determine whether the

software module is defective or not. Classification

models learn from known software defects of the

previous edition. The learned models are applied to

predict the remaining potential defects in the

software system (Wang, 2014).

Different types of machine learning classifiers

are applied to predict software defects. They can be

grouped into three main categories: supervised

learning, unsupervised learning, and semi-

supervised learning (Chug & Dhall, 2013; Malhotra,

2015).

Various machine learning methods are used to

improve the software defect prediction. Research

shows that the most commonly used methods in

this field are:

 Decision Trees (Zhang, Jing & Wang, 2017);

 Bayesian learners (BL) (Jayanthi & Florence,

2019);

 Neural networks (NN) (Jin C., Jin Sh.. , 2015;

Kanmani et al, 2007);

 Support vector machines (SVM) (Qiao et al,

2020);.

 Rule based learning (RBL) (Singh et al, 2017);

 Ensemble learners (EL).

Predictive models can be built based on various

metrics taken from the software’s source code. A

software system metric is an indicator describing a

specific software feature. Various approaches have

been proposed to predict software system defects

based on software metrics in recent years (Ge, Liu

& Liu, 2018). These metrics are used to evaluate the

reliability of software systems, detect defects,

monitor and manage software projects (Zhang,

2009; Kazimov & Bayramova, 2022). The most

commonly used metrics for defect prediction are

listed below (table 1):

Table 1. Software metrics most commonly used in

predicting software defects

 Metrics Description

1. LOC Number of code lines

M
ak

K
ey

b

2. v(g) Cyclomatic complexity

3. ev(g) Basic complexity

4. iv(g) Design complexity

5. n Total number of operators and

operands

H
al

st
ea

d

6. v Volume

7. l Software length

8. d Difficulty

9. i Intelligence

10. e Effort

11. b Error

12. t Time

13. lOCode Number of code lines

14. lOComment Number of comment lines

15. lOBlank Blank lines

16. lOCodeAnd

Comment

Number of comment and code

lines

17. uniq_Op Number of unique operators

18. uniq_Opnd Number of unique operands

19. total_Op Number of total operators

20. total_Opnd Number of total operands

21. branchCount Number of total graph branches

3. Releated work

Currently, the analysis and prediction of

defects in software systems has become one of the

main trends in the field of software engineering.

Software defect prediction using machine learning

is one of the dynamic research areas in software

systems reliability assurance. Research in this field

has started since the 1990s (Malhotra, 2015).

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

25

Ensemble training has performed effectiveness

in predicting software system defect and promises

more positive results than individual classifiers.

The authors in their paper (Aljamaan & Alazba,

2020) conducted research to test the efficiency of

tree structures ensemble methods, which have not

been widely applied in software systems

forecasting. Here, experiments are conducted on 11

datasets from the NASA MDP database of software

system defects. Random Forest and Extra Trees,

XGBoost, Cat-Boost, Gradient Boosting and Hist

Gradient Boosting and AdaBoost ensemble

algorithms are used for forecasting. Random forest

and Extra trees show better performance. The worst

performance is shown by AdaBoost algorithm.

(Catal & Diri, 2009) conducts experiments on a

dataset taken from NASA PROMISE repository.

These experiments show that the Random Forest

algorithm performs better when the data set is large

(when the number of modules is large), and the

Naive Bayes algorithm performs better on small

data sets. This experiment shows that the most

important factor in predicting software system

defects is not software performance, but the correct

selection of the algorithm.

In (Alazzam, Alsmadi & Akour, 2017),

researchers compare Bagging, Boosting and

Stacking ensembles. Naive Bayes, Bayes Network,

SMO, PART, J48, Random Forest, Random Tree,

IB1, Decision table and NB tree are taken as basis

algorithms. Their experimental results show that

Boosting perform better than Bagging, and Stacking

and Random Forest perform well. In order to

increase the efficiency of defect detection, they

recommend combining the Random Forest

algorithm in the ensemble, which performs better

than other base algorithms.

(Li et al, 2019) focuses on combining different

machine learning algorithms to predict software

defects. MDP data set is used as experimental data.

Calculations are performed using 5 different

ensemble algorithms, and as a result of the

comparative analysis, the Random Forest algorithm

is concluded to show better performance.

(Matloob et al, 2021) provides a review of the

literature on the application of the ensemble

algorithm in software defect prediction. The review

is based on scientific articles published in four

online libraries (ACM, IEEE, Springer Link, and

Science Direct) since 2012. This review addresses

five questions covering various aspects of the

application of ensemble training algorithms to

predict software defects. It provides a brief

summary of the latest trends and achievements in

ensemble training for software system defect

prediction and lays some foundation for future

innovation and analysis. As a result of the research,

it is concluded that the most commonly used

ensemble algorithms are Random Forest, Bagging,

Boosting, and the least used ones are Stacking,

Voting and Extra Trees. AUC, accuracy, F-measure,

Recall, Precision, and MCC are mainly used to test

the prediction efficiency of the models. The most

used machine learning platform for conducting

experiments is WEKA. Engineer programmers use

data collected in the PROMISE repository, created

in 2005, when predicting defects in software

systems. Here, data collected based on NASA

software systems and defects occurring in them are

stored in the ARFF format. This allows them to be

analyzed using machine learning tools.

(Hussain et al, 2015) explores AdaboostM1, Vote

and StackingC ensemble algorithms by selecting

Naive Bayes, Logistic, J48, Voted Perceptron and SMO

at base level in Weka machine learning tool. 12 data

sets taken from the PROMISE database are used to test

the efficiency of the ensemble algorithms. This

experiment uses 10-fold cross-validation and ROC

analysis to evaluate the efficiency of the algorithm.

Besides, recall, precision, accuracy, F-measure are also

used to check the efficiency of base classifiers and

ensemble algorithms. As a result, the Stacking

algorithm is found to perform better than other

methods and base classifiers.

(Bowes & Hall, 2018) studies the specific defects

detected by four classifiers. The performances of

Random Forest, Naïve Bayes, RPart and SVM

classifiers are explored on different datasets taken

from NASA, open and commercial databases. Even

though the prediction performance is

approximately the same, each classifier detects a

different set of defects. Therefore, applying voting-

based ensemble methods to find defects in the

software system can provide better performance.

4. Ensemble training methods

In machine learning problems, the main goal is

to find a single model that is capable to predict the

expected result more accurately. Machine learning

algorithms can provide different predictions even

when the model is trained on the same data. This is

called the dispersion of the predictions or the

stability of the model (Zhang & Ma, 2012).

Ensemble training model enables to create a

reliable model by combining several machine

learning classifiers to increase the prediction

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

26

efficiency and get a more accurate result. Ensemble

models are ideal for regression and classification,

increasing model accuracy and minimizing

dispersion.

Certain errors of individual classifiers may lead

to deficiencies in their predictions under certain

circumstances (Cortes et al, 2008; Stapor, 2017).

Therefore, they combine several classifiers to take

advantage of their strengths. In recent years,

researchers have proven experimentally that the

ensemble method performs better than individual

classifiers (Rokach, 2009; Rodriguez, Kuncheva &

Alonso, 2006).

Ensemble training models can be homogeneous

and heterogeneous. The homogeneous ensemble

uses the same algorithm in the base training. The

homogeneous approach trains a base method with

different subsets of the training data and makes a

decision. Whereas, the heterogeneous ensemble

uses different base algorithms. The heterogeneous

approach uses different base models, but the same

training data (Rokach, 2010). The most commonly

used ensemble methods for predicting defects in

software systems are Bagging, Boosting, Random

Forest and Voting methods.

In the case of classification, ensemble training is

performed in two stages:

 Training of base classifiers;

 Calculating the average value based on the

output data of the base classifiers or obtaining

a general result by voting.

There are three main classes of ensemble

training methods: boosting, bagging, and stacking.

1. The main elements of BAGGing

(BootstrapAGGregating) ensemble model can be

explained as follows:

 Initial subsets are loaded from the training

dataset;

 A decision tree is formed for each subset of

loaded data;

 Based on the decisions, the final decision is

made by voting or calculating the average

value (figure 1.).

2. Stacking typically has a two-layer (maybe

more) hierarchy. On the 1st layer, the models

selected for the ensemble are placed, on the 2nd

layer, the final forecasting model based on the

predictions of these models is placed (Figure 2).

3. The models included in the Boosting

ensemble are sequentially added. Each model

corrects the forecast of the previous model and

calculates the weighted average value of the

forecast. Based on these values, the forecast is

calculated (Figure 3).

5. Ensemble method for defect detection

This section makes efforts to develop an

efficient method for predicting software systems

defects using machine learning methods.

Figure 4 illustrates the decision-making system

architecture of the proposed approach for software

systems defects prediction. As figure shows, the

decision-making system includes three classifiers.

Bagging (base learner PART), Random Forest

and Logistic algorithms are combined through the

Vote ensemble algorithm to predict defective

modules in software systems. The aim of combining

these classifiers is to improve the model’s quality of

predicting software system defects. To perform this

process, each classifier is trained using the classified

data.

Figure 1. BAGGing method structural scheme

Figure 2. Stacking method structural scheme

Figure 3. Boosting method structural scheme

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

27

Here, the individual decision of each of these

classifiers is combined to make a collaborative

decision.

6. Experimental study of the proposed

method

Ensemble training has been proven to be an

effective approach for predicting software defects

and ensuring software stability along with

improving the performance of individual classifiers.

Defective software modules have a major impact on

the reliability of software systems, leading to bigger

expenses, longer release times, and significantly

increased maintenance costs for deployed systems.

This article analyzes the most popular and widely

used machine learning algorithms. The data used in

this study is obtained from the open-source NASA

Promise and Github databases.

CM1, DATATRIEVE, JM1, KC1, KC2, KC3,

MC1, PC1, PC2, PC3 databases are used for

experiments (PROMISE & Github). Table 2 presents

the parameters of these databases.

Table 2. Used Databases

Classification is performed on this data set

using 10-fold cross-validation. Naive Bayes,

Support Vector Machine, J48, PART, IBk, Multilayer

Perceptron (MLP) and Random forest algorithms

are taken for comparison (Table 3.).

Table 3. Algorithms taken for comparison

Learner Description

Naive

Bayes(NB)

A Naive Bayes classifier takes all attributes in

the training data to be equally important and

independent and enables them to contribute to

the classifier’s decision. The algorithm is based

on Bayes’ conditional probability theorem.

SMO It implements John Platt’s minimal sequential

optimization algorithm to train a support

vector classifier. A support vector machine is a

maximum margin learning method that works

by finding the optimal hyperplane separating

positive and negative samples from a database.

J48 J48 constructs decision trees from a set of

labeled training samples using the concept of

data entropy.

PART PART is a recursive algorithm based on the

divide-and-conquer strategy, and is a rule

induction method derived from the

combination of C4.5 and RIPPER. Rules are

created, covered training samples are

removed, and rules are recursively genera-

ted for the remaining samples till the end.

IBk IBk is a lazy nearest neighbor method. It is a

sample-based simple training object that uses

the class of the nearest k training samples to the

class of test samples. A training sample with

minimum Euclidean distance from a given test

sample is predicted. When there is more than

one sample within the minimum distance, the

first found sample is used.

Multi-

Layer

Perceptron

(MLP)

MLP is a network structure of input, output

and hidden layers comprising perceptron or

neurons. The neural layers are trained by a

back-propagation algorithm based on the

error correction rule.

Logistic

Regression

(LR)

Logistic regression is a type of statistical

model (also known as a logit model) that is

often used for classification and predictive

analytics. Logistic regression estimates the

probability of an event occurring based on a

data set of given independent variables.

Random

Forest

Random Forest or Random Decision Forests

is an ensemble training method for classifica-

tion, regression, and other problems that

works by building multiple decision trees

during training. In classification problems,

the output of a random forest is the class

chosen by the majority of trees.

Experiments are performed in Weka software.

Weka is one of the most popular data mining tools,

developed in Java at the University of Waikato,

New Zealand. It is widely used due to its mobility,

availability and ease of use (Witten, 2009).

To evaluate the effectiveness of the proposed

method, the true positive ate (TP), false positive rate

(FP), true negative rate (TN), false negative rate

(FN), F-measure, accuracy, precision, and recall

N Data set Number of

Modules

Number of

defective

modules

Features

(Software

metrics)

1. CM1 498 49 21

2. JM1 10885 2106 21

3. KC1 2109 326 21

4. KC2 522 107 21

5. PC1 1109 77 21

6. Datatrieve 130 11 9

7. KC3 194 36 39

8. MC1 1952 46 38

9. PC2 722 16 36

10. PC3 1053 153 37

Figure 4. Software defect prediction model

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

28

parameters are used. This article uses ROC (receiver

operating characteristic, in other words “errors

curve”) and F-measure to check the precision of the

Forecast. The value of the ROC curve varies within

the range of (0,1). A value of 1 is an ideal model.

Table 4 describes confusion matrix used in the

classification process.

 Table 4. Confusion matrix

 Predicted values

 Positive Negative

Actual values

Positive TP FP

Neqative FN TN

The efficiency parameters of the proposed

model are calculated as follows (Ezekiel et al, 2020):

One of the key metrics for evaluating the

performance of predictive models is classification

precision.

Precision is defined as the ratio of true positive

(TP) modules to the total number of modules

classified as positive:

FPTP

TP
ecision


Pr

Recall is defined as the ratio of true positive

modules to the number of truly classified modules:

FNTP

TP
call


Re

Accuracy is calculated as the ratio of the number

of truly classified modules to the total number of

modules:

FNFPTNTP

FNTP
Accuracy






False Positive rate (FPR):

TNTP

FP
FPR




True Positive rate (TPR):

TNTP

TP
TPR




ROC –area shows the dependence of FPR on

TPR (Brownlee, 2020).

Area under the ROC curve - AUC is a measure

of how well a parameter can distinguish between

two classes (impaired/impaired).

2

1 RR FPTP
AUC




F-measure is the harmonic mean of precision

and recall:

callecision

callecision
measuref

RePr

Re*Pr*2




In this article, the prediction accuracy of the

model is evaluated with ROC-area and F-measure,

which are most commonly used in experiments.

Table 5 presents the results of the experiments

conducted on the database according to the F-

measure value, and table 6 presents the results

according to the ROC-area evaluation. Here, the test

results of different algorithms and the proposed

ensemble model (EM) are compared. These results

are graphically illustrated in figure 5 and figure 6,

respectively.

Table 5. Comparison of the proposed method with existing methods by F-measure value

 NB SMO J48 RF PART IBk MLP Ensemble

CM1 0,858 0,852 0,852 0,854 0,851 0,843 0,845 0,846

Datatrieve 0,840 ? 0,867 0,883 0,863 0,883 0,873 0,883

JM1 0,770 0,722 0,769 0,783 0,763 0,766 0,741 0,767

KC1 0,820 0,786 0,832 0,843 0,817 0,837 0,828 0,837

KC2 0,821 0,784 0,810 0,825 0,810 0,802 0,835 0,814

KC3 0,785 0,743 0,783 0,769 0,762 0,708 0,762 0,811

MC1 0,937 ? 0,973 0,976 0,970 0,977 0,974 0,978

PC1 0,895 0,897 0,921 0,927 0,926 0,921 0,917 0,924

PC2 0,930 ? 0,965 ? 0,963 0,958 0,965 0,966

PC3 0,458 ? 0,839 0,840 0,845 0,843 0,842 0,848

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

29

Table 6. Comparison of the proposed method with existing methods by ROC-area value

 NB SMO J48 RF PART IBk MLP Ensembl

CM1 0,658 0,497 0,558 0,750 0,721 0,589 0,734 0,789

DATATRIEVE 0,736 0,500 0,482 0,685 0,550 0,574 0,751 0,791

JM1 0,679 0,502 0,653 0,755 0,712 0,640 0,690 0,763

KC1 0,790 0,516 0,689 0,823 0,747 0,735 0,771 0,831

KC2 0,830 0,597 0,704 0,825 0,704 0,643 0,828 0,831

KC3 0,662 0,514 0,653 0,736 0,601 0,539 0,639 0,759

MC1 0,747 0,500 0,566 0,850 0,580 0,665 0,728 0,886

PC1 0,650 0,500 0,668 0,875 0,814 0,740 0,723 0,884

PC2 0,717 0,500 0,463 0,780 0,605 0,551 0,770 0,804

PC3 0,749 0,500 0,591 0,832 0,767 0,603 0,783 0,843

CM1 DT JM1 KC1 KC2 KC3 MC1 PC1 PC2 PC3

NB

SMO

J48

RF

PART

IBk

MLP

Ensembl

Figure 6. Comparison of the effectiveness of algorithms by ROC-area value

Figure 5. Comparison of the effectiveness of algorithms by F-measure value

CM1 DT JM1 KC1 KC2 KC3 MC1 PC1 PC2 PC3

NB

SMO

J48

RF

PART

IBk

MLP

Ensembl

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

30

As table 6 shows, according to ROC-area

indicator, the defect module detection precision

of the ensemble model is superior to the

detection precision of individual algorithms. As

table 5 shows, according to F-measure value, in

most cases EM prevails, in some cases the RF

model shows a high result. However, unlike RF,

EM performs stable results in both small and

large software systems (Figures 5 and 6).

Figures 7 and 8 illustrate the comparison of

the efficiency of the ensemble model with the RF

algorithm.

The ensemble model is obviously superior to

the RF model for both indicators and has more

stable forecasting performance.

Conclusion

Software defect is a serious problem in software

systems development. Predetermining the module

that contains potential defects increase the

reliability of the software system. Software defect

prediction methods urges quality professionals to

carefully inspect the modules classified as defective

during software code testing.

This article proposed an ensemble training

method for software defect prediction.

PROMISE and GITHUB open databases were

used for experiments. ROC-area and F-measure

parameters were used to evaluate the

effectiveness of the proposed method. The

results of the experiments showed that the

proposed method is superior to the most

commonly used NB, SMO, J48, PART, İBk, MLP

and RF methods in the prediction of software

defects due to its detection precision.

This research concluded that the application

of ensemble methods in software system defect

prediction provided more precise results than

individual machine learning methods.

References

Alazzam I., Alsmadi I., Akour M., (2017). Software fault

proneness prediction: A comparative study between

bagging, boosting, and stacking ensemble and base

learner methods, Int. J. Data Anal. Techn. Strategies, vol.

9, no. 1, p. 1, doi: 10.1504/ijdats.2017.10003991.)

Aljamaan H., Alazba A. (2020). Software defect prediction using

tree-based ensembles. In Proceedings of the 16th ACM

International Conference on Predictive Models and Data

Analytics in Software Engineering (PROMISE 2020).

Association for Computing Machinery, New York, NY,

USA, pp.1–10. https://doi.org/10.1145/3416508. 3417114.

Alsaeedi A., Zubair Khan M. (2019). Software Defect

Prediction Using SupervisedMachine Learning and

Ensemble Techniques:A Comparative Study, Journal of

Software Engineering and Applications, 12, pp.85-100.

Bowes D., Hall T., (2018). Software defect prediction: do

different classifiers find the same defects? Petrić J.

Software defect prediction: do different classifiers find

the same defects? Software Qual J., 26, pp.525–552
https://doi.org/10.1007/ s11219-016-9353-3.

 Catal C., Diri B. (2009). Investigating the effect of dataset size,

metrics sets, and feature selection techniques on software

fault prediction problem. Information Sciences, 179, pp.

1040–1058.

Chug A., Dhall S., (2013). Software defect prediction using

supervised learning algorithm and unsupervised

learning algorithm, Confluence 2013: The Next

Generation Information Technology Summit (4th

International Conference), Noida, pp. 173-179, doi:

10.1049/cp.2013.2313.

Cortes C., LeCun Y., Vapnik V., Drucker H., Jackel L. D.

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8 9 10 11

RF Ensembl

Figure 7. Comparison of the efficiency of RF and

the proposed model by F-measure value

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6 7 8 9 10 11

RF EnsemblFigure 8. Comparison of the efficiency of RF and

the proposed model by ROC-area value

https://doi.org/10.1145/3416508
https://doi.org/10.1007/

Problems of Information Technology (2023), vol. 14, no. 2, 23-31

31

(2008). Boosting and other ensemble methods, Neural

Comput., vol. 6, no. 6, pp. 1289–1301,

Ezekiel O.O., Irhebhude M. E., Evwiekpaefe A.E. and

Nonyelum O., F. (2020). Evaluation of Machine Learning

Classification Techniques in Predicting Software Defects,

Transactionson Machine Learning and Artificial

Intelligence, Volume 8 No 5 August, pp: 1-15

Ge J., Liu J., Liu, W. (2018). Comparative Study on Defect

Prediction Algorithms of Supervised Learning Software

Based on Imbalanced Classification DataSets. 2018 19th

IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 27-29 June, Busan, 399-406.

Hussain S., Keung J., Khan A. A., and Bennin K. E., (2015).

Performance evaluation of ensemble methods for

software fault prediction, in Proc. ASWEC 24th

Australas. Softw. Eng. Conf. (ASWEC), vol. 2, Sep. pp.

91–95, doi: 10.1145/2811681.2811699.

Jayanthi R., Florence L. (2019). Software defect prediction

techniques using metrics based on neural network

classifier. Cluster Comput 22 (Suppl 1), pp.77–88.

https://doi.org/10.1007/s10586-018-1730-1.

Jin C., Jin Sh. (2015). Prediction approach of software fault-

proneness based on hybrid artificial neural network and

quantum particle swarm optimization. Applied Soft

Computing 35 (Oct. 2015), pp.717–725.

https://doi.org/10.1016/j. asoc.2015.07.006

Kanmani S., Uthariaraj V. R., Sankaranarayanan V.,

Thambidurai P. (2007). Object-oriented software fault

prediction using neural networks. Information and

Software Technology 49, 5, pp.483–492.

https://doi.org/10.1016/ j.infsof.2006.07.005),

Kaur A., Kaur K. (2014). Performance analysis of ensemble

learning for predicting defects in open source software, 2014

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Delhi, India,

pp. 219-225, doi: 10.1109/ICACCI. 2014.6968438

Kazimov T.H., Bayramova T. A., Malıkova N.C. (2021). Research

of intelligent methods of software testing. System Research

& Information Technologies, № 4, pp. 42- 52.

Kazimov T.H., Bayramova T. A. (2022). Development of a hybrid

method for calculation of software complexity // System

Research & Information Technologies, № 2, pp. 32- 44.

Qiao L, Li X., Umer Q., Guo P. (2020). Deep learning based

software defect prediction, Neurocomputing, Vol. 385,

pp. 100-110, https://doi.org/10.1016/j.neucom. 2019.11.067

Li R., Zhou L., Zhang Sh., Liu H., Huang X., Sun Z. (2019).

Software Defect Prediction Based on Ensemble Learning.

In Proceedings of the 2019 2nd International Conference

on Data Science and Information Technology (DSIT

2019). Association for Computing Machinery, New York,

NY, USA, 1–6. https://doi.org/10.1145/3352411. 3352412.

Malhotra R. (2015). A systematic review of machine learning

techniques for software fault prediction. Applied Soft

Computing, 27, pp.504–518.

https://doi.org/10.1016/j.asoc.2014.11.023,

Matloob F. et al., (2021). Software Defect Prediction Using

Ensemble Learning: A Systematic Literature Review, in

IEEE Access, vol. 9, pp. 98754-98771, doi:

10.1109/ACCESS.2021.3095559.

Menzies T., Milton Z., Turhan B., Cukic B., Jiang Y., and

Bener A. (2010). Defect prediction from static code

features: current results, limitations, new approaches.

Automated Software Engineering 17, 4, pp.375–407.

https://doi.org/10.1007/s10515-010-0069-5.

NASA Defect Dataset,

https://github.com/klainfo/NASADefectDataset/tree/ma

ster/OriginalData/MDPI.

NASA metrics data program, PROMISE software

engineering repository, 2004,

http://promise.site.uottawa.ca/SERepository/datasets-

page.html

Rathore S.S., Kumar S. A. (, 2016). Decision Tree Regression

Based Approach forthe Number of Software Faults

Prediction. ACM SIGSOFT Softw Are Engineering

Notes41, pp.1-6. https://doi.org/10.1145/2853073.2853083

Rathore S.S., Kumar, S. (2017). An Empirical Study of Some

Software Fault Prediction Techniques for the Number of

Faults Prediction. Soft Computing, 21,7417-7434.

Rodriguez J. J., Kuncheva L. I., Alonso C. J., (2006). Rotation

forest: A new classifier ensemble method,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619.

Rokach L., (2009). Taxonomy for characterizing ensemble

methods in classification tasks: A review and annotated

bibliography, Comput. Statist. Data Anal., vol. 53, no. 12,

pp. 4046–4072.

Rokach L. (2010). Ensemble-based classifiers. Artificial

Intelligence Review 33, 1, pp.1-39.

https://doi.org/10.1007/s10462-009-9124-7.

Singh P., Pal N. R., Verma S.. Vyas O. P. (2017). Fuzzy Rule-

Based Approach for Software Fault Prediction, in IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, vol. 47, no. 5, pp. 826-837, doi:

10.1109/TSMC.2016.2521840.

Stapor K. (2017). Evaluating and comparing classifiers:

Review, some recommendations and limitations, in Proc.

Int. Conf. Comput. Recognit. Syst., pp. 12–21.

Thota M. K., Shajin F. H, Rajesh P., (2020). Survey on software

defect prediction techniques, Vol. 17, No. 4, pp.100-110.

Wang H. (2014). Software Defects Classification Prediction

Based on Mining Software Repository. Master’s Thesis,

Uppsala University, Department of

InformationTechnology. p.93.

Witten H., Frank E., Hall M. A., Pal C. J., (2009). Data Mining:

Bernhard Pfahringer, Peter Reutemann, and Ian H.

Witten. 2009. The WEKA data mining software: an

update. SIGKDD Explor. Newsl. 11, 1, 10–18.

https://doi.org/10.1145/1656274.1656278

Yan Z., Chen X. and Guo P. (2010). Software Defect

Prediction Using Fuzzy Sup-port Vector Regression. In:

Zhang, L., Lu, B. and Kwok, J., Eds., Advances in

NeuralNetworks, Springer, Berlin, pp.17-24.

https://doi.org/ 10.1007/978-3-642-13318-3_3

Zhang Ch., Ma Y. (2012). Ensemble Machine Learning: Methods

and Applications, Springer New York, NY, p.332.

Zhang H. (2009). An Investigation of the Relationships

between Lines of Code and Defects. 2009 IEEE

International Conference on Software Maintenance, 20-

26 September Edmonton, 274-283.

Zhang Z., Jing X., Wang T. (2017). Label propagation based

semi-supervised learning for software defect prediction.

Automated Software Engineering, 24, pp.47–69.

https://doi.org/10.1007/s10515-016-0194-x.

Brownlee J., (2020). ROC Curves and Precision-Recall Curves

for Imbalanced Classification,

https://machinelearningmastery.com/roc-curves-and-

precision-recall-curves-for-imbalanced-classification/

(accessed Jun. 1, 2022)

https://doi.org/10.1007/s10586-018-1730-1
http://journal.iasa.kpi.ua/article/view/240177
http://journal.iasa.kpi.ua/article/view/240177
https://doi.org/10.1016/j.neucom.%202019.11.067
https://doi.org/10.1145/3352411
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1007/s10515-010-0069-5
https://github.com/klainfo/NASADefectDataset
https://doi.org/10.1145/2853073.2853083
https://doi.org/10.1007/s10462-009-9124-7
https://gigvvy.com/journals/ijase/articles/ijase-202012-17-4-331
https://gigvvy.com/journals/ijase/articles/ijase-202012-17-4-331
https://gigvvy.com/journals/ijase/articles/17/4/
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1007/s10515-016-0194-x

