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 A B S T R A C T 

The concept of demography, which includes the processes such as birth, death, 

natural increase, improvement of employment and standard of living of the 

population, migration, etc., occupies a unique place in the global processes of the 

modern era. In this regard, this article uses clustering algorithms, which are 

estimated as a demographic data mining technology. For the analysis of 

demographic data, experiments are performed using k-means and fuzzy c-means 

clustering algorithms in the Python programming language. The experiment uses 

PCA method to reduce the size and get more effective results. Silhouette, Calinski-

Harabasz and Davies-Bouldin indices, and algorithm execution time indicators 

are used to evaluate the quality of the algorithm. The result of the experiment 

shows the possibility of achieving an effective result through the k-means and 

fuzzy c-means clustering algorithms by applying the PCA method in the 

demographic data analysis. 

 

1. Introduction  

Data mining technology in the field of ICT is 

considered to be a very beneficial and important 

tool, since the issue of processing large volumes 

of data is a rather complex process and has 

accelerated the interest in the application of data 

mining. Data mining refers to discovering useful 

knowledge and patterns in large datasets to 

make certain decisions about future actions. 

Data mining technology emerged as a tool to 

extract previously unknown patterns and trends 

(useful knowledge) from raw data. Clustering, 

one of the data mining methods, is considered to 

be one of the most popular methods for 

grouping datasets. Data clustering is the process 

of identifying natural groupings or clusters 

within multidimensional data based on some 

dimension metrics (e.g., the Euclidean metric) 

(Jain, Duin & Mao, 2000). The qualitative 

clustering method provides clusters with high 

intra-cluster similarity and low inter-cluster 

similarity. By applying the PCA method 

proposed in this study, k-means and fuzzy c-

means algorithms are comparatively analyzed 

according to clustering efficiency. 

2. The concept of demography  

Demography as a multidisciplinary field of 

study that explores the regularities of events and 

processes occurring in the structure, location, 

migration and dynamics of the population 

based on the social, economic, cultural, medical-

biological, geographical, and other factors 

(Alguliyev & Yusifov, 2021). The concept of 

demography, which includes the processes such 

as birth, death, natural increase, improvement of 

employment and standard of living of the 
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population, migration, etc., occupies a unique 

place in the global processes of the modern era. 

Demographic data such as population size, 

distribution and dynamics are considered 

important factors in assessing the needs of a 

country in terms of education and health 

facilities, physical infrastructure, employment 

and overall economic development. 

Demography is a field of science that 

explores and describes population in general. 

More specifically, demography uses census 

data, surveys, and statistical models to analyze 

population size, migration, and structure. 

Demography not only studies the existing 

population but also works together with the 

factors affecting the population change. 

Moreover, demographers view how a 

population develops, changes, and reproduces 

over a period of time. Birth, death and migration 

rates are the key aspects of demographic 

analyses. Age and gender are important features 

determining these aspects. Some examples of 

demographics may include: 

1. Age of death: Death in the early years of 

life and death at the age of 93 have very different 

consequences for a person. However, both affect 

the calculation of the total life expectancy of the 

population and its age structure. 

2. Mother’s age at the first birth: It makes a 

big difference whether a woman is 22 or 36 

when she gives birth to her first child. Her 

chances of having more children throughout her 

lifetime are higher in the first case rather than in 

the second. In this regard, populations with a 

lower average age of mothers when she gives 

birth to her first child tend to have higher 

fertility rates and larger family sizes. 
3. Gender (sex) distribution among 

newborn children: If there is a disparity in the 

gender distribution among newborn children 

for one or more generations, that is, if there is a 

clearly defined difference in the number of 

newborn boys and girls, this will affect their 

lives. For example, it will lead to the lack of 

partners to start a family, which may affect the 

birth rate (Ahmadov, 2021). 

3. k-means algorithm 

The k-means algorithm is a simple, 

numerical, iterative method and one of the 

unsupervised clustering algorithms of machine 

learning. This algorithm has advantages and 

disadvantages, but it is perhaps one of the most 

popular algorithms due to its fast performance 

when applied to large data. The 𝑘 -means 

algorithm is a partition-based clustering method 

that attempts to identify a user-specified 

number of 𝑘 clusters. These clusters are 

represented by their centers (means). The 

algorithm consists of two separate steps: the first 

step is the random selection of 𝑘 centers, where 

the value of 𝑘 is predetermined. The next step is 

to assign each point to the nearest center. 

Distance metrics are used to calculate the 

distance between each point and the cluster 

centers. When all the data are assigned to certain 

clusters, the centroid of each cluster is 

recalculated. 

The 𝑘 -means algorithm is an iterative 

method consisting of dividing a set of 𝑛 number 

of objects into 𝑘 number of clusters so that the 

objects within the cluster should be similar to 

each other and different from the objects in other 

clusters. Let 𝑁 =  {𝑥1, … , 𝑥𝑛} be a set of 𝑛 

number of objects to be grouped by the 

similarity criterion, where   xi ∈ Rd  𝑖 =  1, … , 𝑛 

and 𝑑 ≥  1 are the number of dimensions. 

Additionally, let 𝑘 ≥  2 be an integer. 

The basic working principle of the 𝑘 -means 

algorithm is to minimize the objective function 

(SSE). 

 

𝑆𝑆𝐸 = ∑ ∑ ||𝑥𝑖 − 𝜇𝑗||2
𝑥𝑖∈𝑐𝑗

𝑘
𝑗=1  ,  

 

here  𝜇𝑗 =  
1

𝑛𝑗
  ∑ 𝑥𝑖𝑥𝑖∈𝑐𝑗

 

𝑐𝑗 denotes the cluster, 𝑛𝑗- the number of 

objects in cluster 𝑐𝑗, 𝜇𝑗- the cluster center, and 𝑥𝑖 

- the point. 

The working principle of the 𝑘 means 

algorithm is to always try to approach the local 

minimum. The particular local minimum 

obtained depends on the starting cluster centers. 

The 𝑘 -means algorithm updates the cluster 

centers until a local minimum is reached. 

Distance and center calculations are performed 

until the 𝑘 -means algorithm converges, and 

iterations are performed several times. Let the 

positive integer 𝑡 is defined as the number of 𝑘 -

means iterations. The exact value of 𝑡 varies 

depending on the starting cluster centers even 

within the same dataset. Thus, the 
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computational complexity of the algorithm is  

𝑂(𝑛 ∗ 𝑘 ∗ 𝑡), where   𝑛 is the total number of 

data, 𝑘 is the number of clusters, and 𝑡 is the 

number of iterations. For a multidimensional 

dataset, the computational complexity is 𝑂(𝑛 ∗

𝑘 ∗ 𝑡 ∗ 𝑑), where  𝑑 is the number of attributes 

(dimensions) in the dataset. 

The complexity of correct determination of 

the number of clusters is one of the main 

disadvantages of the 𝑘 -means algorithm. 

During clustering, factors such as noise in the 

data are not taken into account when selecting 

similar groups. Therefore, when applying the 𝑘 

-means algorithm to data with noise points, 

several difficulties may arise. The biggest 

drawback of the k-means algorithm is the 

selection of starting centers. Regarding these 

shortcomings, various scientific studies have 

been conducted and new modified versions of 

the 𝑘 -means algorithm have been proposed (Oti 

et al, 2021). 

Although the 𝑘 -means algorithm has several 

disadvantages, it also has many advantages. One 

of the most widely used clustering techniques, 𝑘 

-means is considered to be one of the main 

solutions for clustering very large datasets. The 𝑘 

-means algorithm’s ease of use, computational 

efficiency, and low memory storage have made it 

very popular even compared to other clustering 

methods. Correspondingly, the 𝑘 -means 

clustering method has the advantage of enabling 

an unknown number of clusters to be searched in 

a dataset. 

4. Fuzzy c-means algorithm 

In hard clustering, each element in the 

dataset refers to only one cluster. Assume that 

the dataset is divided into 𝑘 number of clusters, 

and a set of variables 𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖𝑘 is defined, 

which represent the membership degree of the 

element 𝑖 to the cluster 𝑘. In hard clustering 

algorithms, one of these variables will be 1 and 

the rest will be 0. 

This indicates that each element is classified 

into only one cluster. In fuzzy or soft clustering, 

the elements may refer to more than one cluster, 

and each element is assigned a degree of 

membership to the clusters it refers to. In fuzzy 

clustering, membership degrees are assigned to 

all clusters. 𝑚𝑖𝑘  can be in the range of 0 and 1 in 

this case. Membership degrees indicate the 

power of association between that element and 

a particular cluster. 

The fuzzy c-means (FCM) algorithm is one of 

the most widely used fuzzy clustering 

algorithms. This algorithm was proposed by 

Dunn J. in 1973 and improved by Bezdek J. in 

1981 (Grover, 2014). It is one of the most popular 

fuzzy clustering methods with the approach 

that elements have membership degrees with 

cluster centers to be updated iteratively 

(Chattopadhyay, Pratihar, Sarkar, 2011). Objects 

on the boundaries between several classes may 

not fully refer to one of the classes, but instead 

are given degrees of membership in the range of 

0 and 1, indicating their partial membership 

(Suganya & Shanti, 2012). The computational 

complexity of the fuzzy c-means algorithm is 

𝑂(𝑛 ∗ 𝑑 ∗ 𝑘2 ∗ 𝑡), where 𝑛 is the total number of 

data, 𝑑 is the number of attributes, 𝑘 is the 

number of clusters, and 𝑡 is the number of 

iterations. Fuzzy c-means is widely used in 

astronomy, chemistry, geology, and medical 

diagnosis (Yong, Chongxun & Pan, 2004). 

Steps for fuzzy c-means clustering are as 

follows: 

Specify the number of clusters 𝑐, where 𝑐 

must be in the range 2 <= 𝑐 <= 𝑛, and set a 

value for the parameter 𝑚 in the range 1.25 <=

𝑚 <= 2 . 𝑈(0) the membership degree matrix. 

Each step in this algorithm will be denoted as 𝑟, 

where 𝑟 = 0, 1, 2 … 

Calculate 𝑐 number of center vectors {vij} for 

each step. 

 

vij =
∑ (µik)m xkj n

k=1

∑ (µij)m  n
k=1

             (1) 

 

1. Calculate the distance matrix D[c,n]. 

Dij = (∑ (xkj − vij)
2m

j=1 )
1

2⁄         (2) 

 

2. Update the membership matrix 𝑈(𝑅) for 

the rth step. 

  

uij
r−1 =  

1

∑ (
𝑑𝑖𝑘

𝑟

𝑑𝑗𝑘
𝑟 )c

j−1

2
m−1⁄

          (3) 

 

If ||𝑈(𝑘+1) − 𝑈(𝑘)|| < 𝛿, the algorithm stops, 

otherwise it goes back to step 2, iteratively 

updating the cluster centers as well as the 
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membership values for the elements (Ghosh & 

Dubey, 2013). 

5. PCA method  

Principal Component Analysis or PCA is one 

of the finest methods used for efficient analysis of 

multi-dimensional data. It was first developed by 

Pearson in 1901 and improved independently by 

Hotelling in 1933. Like many other multivariate 

methods, the PCA method was also not widely 

accepted or used until the advent of computers, 

but is now integrated almost to all statistical 

software packages and widely applied. PCA is 

the general name for a method that uses 

mathematical principles to convert a number of 

correlated variables into a smaller number of 

variables called principal components (Mishra et 

al., 2017). 

PCA is used to reduce the attributes of a large 

dataset by retaining most of the information. 

The application of the PCA method speeds up 

the algorithms execution and facilitates data 

visualization. 

6. Experiments  

This section presents the results of the 

experiment for conducting a comparative 

analysis of 𝑘 -means and fuzzy c-means 

clustering algorithms on demographic data of 

different sizes. Python programming language 

(Python3.8) is used to perform the experiments. 

Experiments are conducted on five different 

sizes of data. Experiments were conducted on 

demographic datasets “Voter Registration”, 

“Economic Community of Central African 

States Statistics, 2013”, “Income Inequality”,  

“Educational Attainment” and “CBSA to Zip 

Crosswalk 2012” (dataworld.io). Table 1 

illustrates the characteristics of the dataset. 

Table 1. Characteristics of the dataset 

Name  Number of 
objects  

Number of 
attributes 

Voter Reg. 96531 8 

Economic. 2809 21 

Income 4789 9 

Educational. 166663 8 

CBSA 165509 6 
 

During the experiment, the PCA method is 

used to make 𝑘-means and fuzzy c-means 

clustering algorithms more effective. The PCA 

method reduces the data size, makes algorithms 

run faster, and at the same time, minimizes the 

data loss. The number of attributes in each 

dataset is reduced to 2 through the PCA method. 

Experiments are performed on all datasets to 

check the results of 𝑘 -means and fuzzy c-means 

algorithms when the PCA method is applied 

and when the PCA method is not applied. The 

experiment results are comparatively analyzed 

using different evaluation indices. 

Silhouette, Davies-Bouldin, Calinski-

Harabasz indices and the algorithm execution 

time are used to evaluate the efficiency of the 

proposed method and used algorithms (Mamat 

et al, 2018; Wijaya et al, 2021; Wang & Xu, 2019). 

The Silhouette index takes a value in the range 

of [−1,1], with -1 as the worst case and 1 as the 

best case for clustering. Moreover, the Calinski-

Harabasz index provides good performance in 

its higher values. Lower value of the Davies-

Bouldin index and the algorithm execution time 

are considered good for clustering. 

As Table 2 shows, during experiments with 

the fuzzy c-means algorithm on the “Voter 

Registration” dataset, when the PCA method is 

applied, Silhouette, Davies-Bouldin and the 

algorithm execution time provide good 

performance in all cluster values, whereas, the 

Calinski-Harabasz evaluation index performs 

better only in 7 out of 9 indicators. When the 

PCA method is applied during the experiments 

using the k-means algorithm on the same 

dataset, Calinski-Harabasz and Davies-Bouldin 

indices show better performance in all cluster 

values, and Silhouette only in 7 out of 9 

indicators. However, the algorithm execution 

time performs worse in all cluster values when 

the PCA method is applied. 

During experiments with the fuzzy c-means 

algorithm on the dataset “Economic community 

of central African states statistics, 2013”, when 

the PCA method is applied, Calinski-Harabasz, 

Davis-Buldin and the algorithm execution time 

perform high performance in all cluster values, 

and the Silhouette evaluation index performs 

higher performance only in 7 out of 9 indicators. 

Calinski-Harabasz, Davis-Buldin indices and 

the algorithm execution time perform well in all 

cluster values, and Silhouette only in 6 out of 9 

indicators when the PCA method is applied 
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during experiments using the k-means 

algorithm. 

During the experiments with the fuzzy c-

means algorithm on the dataset “Income 

inequality”, when applying the PCA method, 

Silhouette, Calinski-Harabasz and Davies-

Bouldin show better performance in all cluster 

values, and the algorithm execution time only in 

6 out of 9 indicators. When applying the PCA 

method during experiments using the k-means 

algorithm on the same dataset, the Silhouette, 

Calinski-Harabasz, and Davies-Bouldin indices 

show better performance in all cluster values, 

and the algorithm execution time only in 7 out 

of 9 indicators. 

During experiments with the fuzzy c-means 

algorithm on the dataset “Educational 

attainment”, when applying the PCA method, 

Silhouette, Calinski-Harabasz and Davies-

Bouldin show better performance in all cluster 

values, and the algorithm execution time only in 

6 out of 9 indicators. When the PCA method is 

applied during the experiments through the k-

means algorithm, the Silhouette, Calinski-

Harabasz and Davies-Bouldin indices show 

better performance in all cluster values, and the 

algorithm execution time only in 7 out of 9 

indicators. 

During experiments with the fuzzy c-means 

algorithm on the dataset “Cbsa to zip crosswalk 

2012”, when applying the PCA method, 

Silhouette, Calinski-Harabasz and Davies-

Bouldin show better performance in all cluster 

values, and the algorithm execution time only in 

4 out of 9 indicators. When the PCA method is 

applied during the experiments through the k-

means algorithm, the Silhouette, Calinski-

Harabasz and Davies-Bouldin indices show 

better performance in all cluster values, and the 

algorithm execution time only in 7 out of 9 

indicators. 

5 datasets are used during the experiment. 

Experiments are conducted on each dataset 

using the fuzzy c-means and k-means 

algorithms applying and not applying the PCA 

method. Experiments are carried out for values 

of the number of clusters (k) from 2 to 10. Both 

k-means and fuzzy c-means algorithms are 

evaluated using Silhouette, Calinski-Harabasz, 

Davies-Bouldin, and time indicators. Thus, a 

total of 45 results are obtained for each indicator 

in order to compare the effectiveness of the PCA 

method application when taking onto account 

the 5 datasets and 9 clusters for each algorithm. 

During the experiments through the fuzzy c-

means algorithm, when the PCA method is 

applied, the Silhouette index shows better 

performance in 43 out of 45 values, and in 40 out 

of 45 values though the k-means algorithm. 

During the experiments through the fuzzy c-

means algorithm, when the PCA method is 

applied, the Calinski-Harabasz index shows 

better performance in 43 of the 45 values, and in 

all 45 values though the k-means algorithm. 

Davies-Bouldin index shows better 

performance in all 45 values when the PCA 

method is applied during experiments using 

both fuzzy c-means and k-means algorithm. 

During the experiments through the fuzzy c-

means algorithm, when the PCA method is 

applied, the algorithm execution time shows 

better performance in 34 out of 45 values, and in 

30 out of 45 values through the k-means 

algorithm. 

 

 

Table 2. Results of fuzzy c-means and k-means algorithms 

VOTER REGISTRATION (96531*8) 

Fuzzy c-means 

PCA method not used PCA method used 
Cluster 

Number  
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.7667 79403.25 0.3515 109.66 2 0.8323 114148.64 0.2362 106.40 

3 0.6750 46020.36 0.9743 105.24 3 0.7508 68848.23 0.5588 105.04 

4 0.6987 49811.10 0.7730 108.92 4 0.7674 53266.38 0.5405 107.11 

5 0.6492 38897.30 0.9262 113.25 5 0.7296 41339.43 0.6626 108.97 

6 0.6621 35959.77 0.8831 114.39 6 0.7124 33729.10 0.7228 113.94 

7 0.6008 26876.41 1.2404 117.83 7 0.7081 29013.56 0.6990 113.48 

8 0.6126 26308.67 1.1745 138.12 8 0.6960 25040.89 0.7789 128.32 

9 0.6223 24242.28 1.1353 127.89 9 0.7101 103423.27 0.6321 122.46 

10 0.6345 21948.36 1.0785 127.54 10 0.7105 94173.18 0.6322 120.31 
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k-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calainski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.7674 79429.75 0.3485 105.19 2 0.8325 114151.39 0.2357 105.47 

3 0.7719 96490.95 0.3356 105.59 3 0.8372 198963.95 0.3094 105.86 

4 0.7957 120112.08 0.5228 108.06 4 0.7566 184040.94 0.5115 127.67 

5 0.7977 115325.77 0.5279 105.48 5 0.7598 212258.48 0.5173 110.51 

6 0.7034 120246.09 0.6437 105.87 6 0.7769 269975.81 0.4786 110.19 

7 0.7147 138177.51 0.6484 107.66 7 0.7810 291837.67 0.4845 109.25 

8 0.7177 135204.34 0.6367 106.85 8 0.7814 327419.19 0.4515 117.66 

9 0.6782 131273.29 0.6925 114.22 9 0.7509 319980.09 0.5131 123.38 

10 0.6845 137153.20 0.7229 109.34 10 0.7508 339776.76 0.5133 133.31 

ECONOMIC COMMUNITY OF CENTRAL AFRICAN STATES STATISTICS, 2013 (2809*21) 

Fuzzy c-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number  
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.9804 4612.86 0.5836 0.6844 2 0.9813 5254.93 0.5190 0.1845 

3 0.9762 6163.90 0.6444 0.2650 3 0.9778 8045.76 0.5215 0.1904 

4 0.9695 5321.80 0.8220 0.4741 4 0.9714 7447.87 0.6486 0.2963 

5 0.9677 6123.24 0.8175 0.6330 5 0.9703 9746.42 0.6379 0.2897 

6 0.9641 5701.88 0.9583 0.6460 6 0.9662 9837.91 0.6850 0.4575 

7 0.9624 5501.16 0.9102 1.1435 7 0.9589 9535.98 0.6751 0.5635 

8 0.9558 5342.97 0.9189 1.2202 8 0.9468 9021.36 0.6912 0.4480 

9 0.9411 4160.10 0.9572 1.2228 9 0.9465 8369.48 0.6632 0.4594 

10 0.9403 4539.19 1.0746 1.4222 10 0.9464 7885.83 0.7471 0.7569 

k-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.9815 4730.41 0.5612 0.3660 2 0.9820 5379.03 0.4996 0.2938 

3 0.9757 6095.51 0.6599 0.2942 3 0.9772 7975.66 0.5402 0.2832 

4 0.9675 5213.86 0.7835 0.3332 4 0.9701 7279.92 0.6139 0.3161 

5 0.9604 4343.46 0.9344 0.4338 5 0.9643 6297.72 0.6979 0.4253 

6 0.9406 3597.18 0.9434 0.4268 6 0.9463 5284.55 0.7061 0.3802 

7 0.9234 3014.27 0.9819 0.4885 7 0.9305 4438.73 0.7388 0.4458 

8 0.8936 2591.05 0.9996 0.5270 8 0.8911 3816.90 0.7326 0.4672 

9 0.8761 2278.69 1.1344 0.6228 9 0.8519 3344.73 0.7977 0.5322 

10 0.8384 2026.85 1.1349 0.7094 10 0.6151 2973.13 0.8216 0.5680 

INCOME INEQUALITY (4789*9) 

Fuzzy c-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.7680 5686.90 0.3734 0.5056 2 0.8853 10394.18 0.1651 0.5261 

3 0.6581 3380.84 0.9785 0.5574 3 0.8363 5880.21 0.6065 0.5411 

4 0.7043 2701.89 0.8925 0.6254 4 0.7149 4095.54 0.6840 0.5885 

5 0.6581 2110.48 0.9641 0.7032 5 0.7095 3120.99 0.7166 0.8027 

6 0.6407 1721.93 1.0556 1.0831 6 0.7065 2532.23 0.9731 0.7929 

7 0.6268 1444.59 1.3136 1.0719 7 0.6838 2120.91 0.9501 1.0890 

8 0.6354 1311.41 1.3080 1.4869 8 0.6814 1830.00 1.1108 1.1081 

9 0.6108 1137.45 1.4586 1.7222 9 0.6763 1606.98 1.1324 1.2683 

10 0.5991 1033.82 1.4870 1.7268 10 0.6658 1429.45 1.1172 1.4992 

k-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.7684 5687.86 0.3703 0.5042 2 0.8855 10394.63 0.1644 0.5076 

3 0.7686 3432.59 0.9895 0.5189 3 0.8535 5904.10 0.5852 0.5335 

4 0.7465 3521.41 1.0914 0.6103 4 0.8416 76328.99 0.3244 0.5525 

5 0.7103 6415.76 0.6743 0.5914 5 0.7240 94186.85 0.4703 0.5674 

6 0.7203 12069.67 0.5616 0.6627 6 0.7282 99618.66 0.5186 0.5864 

7 0.7013 11707.54 0.6462 0.7031 7 0.7200 108551.30 0.5713 0.6642 

8 0.6829 11128.35 0.7519 0.7587 8 0.7039 110052.32 0.6227 0.6292 

9 0.6879 11599.76 0.7202 0.8348 9 0.6986 111084.80 0.6562 0.7141 

10 0.6561 13009.63 0.7447 0.8955 10 0.6954 111764.51 0.6831 0.7949 

EDUCATIONAL ATTAINMENT (166663*8) 

Fuzzy c-means 

PCA method not used PCA method used 
Cluster 

Number  
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.4476 56004.39 0.9885 323.65 2 0.6304 121059.67 0.5588 319.58 

3 0.3333 37056.26 1.3710 309.22 3 0.5664 86447.04 0.5846 311.25 

4 0.2680 27424.67 1.7084 310.75 4 0.5254 65741.20 0.6003 310.90 

5 0.2135 21423.24 2.1647 309.05 5 0.5175 52766.15 0.6249 309.06 
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6 0.2363 23287.98 1.4911 317.44 6 0.5043 43719.80 0.6562 308.88 

7 0.2012 19659.62 1.7451 320.41 7 0.4829 37170.87 0.6872 312.30 

8 0.2241 18692.38 1.3863 323.31 8 0.4749 32394.23 0.6887 310.91 

9 0.1991 16559.45 1.5567 327.72 9 0.4722 28691.13 0.7114 312.58 

10 0.2204 16721.53 1.3282 337.76 10 0.4608 25693.27 0.7420  315.29 

k-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.4557 56315.47 0.9698 319.39 2 0.6311 121074.36 0.5594 316.35 

3 0.4767 43593.98 1.1312 317.07 3 0.5710 86590.43 0.5914 307.84 

4 0.3604 36609.96 1.1283 307.43 4 0.5257 65803.68 0.6134 305.01 

5 0.3886 33304.33 1.0224 307.39 5 0.5313 169461.96 0.5477 307.39 

6 0.3838 47042.58 0.9993 307.38 6 0.5242 151334.21 0.5629 306.54 

7 0.3427 43114.64 1.0614 305.25 7 0.5107 133795.23 0.5893 302.12 

8 0.4076 42394.48 0.9118 307.71 8 0.4903 118712.17 0.6301 300.40 

9 0.3625 42032.53 0.8999 305.57 9 0.4826 107123.18 0.6109 299.99 

10 0.3749 43647.65 0.8543 308.47 10 0.4871 178513.36 0.6056 324.95 

CBSA TO ZIP CROSSWALK 2012 (165509*6) 

Fuzzy c-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.4730 191313.48 0.8654 308.31 2 0.5723 306148.14 0.6468 309.33 

3 0.3405 131455.55 1.2219 312.17 3 0.4551 236448.42 0.8430 312.61 

4 0.2718 112708.70 1.4316 311.68 4 0.3998 236149.42 0.9560 313.09 

5 0.2760 97895.42 1.4007 312.74 5 0.4407 241893.00 0.7967 311.42 

6 0.2958 95980.99 1.1999 323.76 6 0.4614 251099.19 0.7178 313.63 

7 0.3144 95156.23 1.1771 324.69 7 0.4910 281029.57 0.6694 354.35 

8 0.3281 95019.99 1.0442 333.69 8 0.4862 273841.77 0.7579 319.92 

9 0.3432 95326.15 1.0481 320.99 9 0.4300 255141.78 0.8378 328.84 

10 0.3372 89179.35 1.2186 339.74 10 0.4543 284408.76 0.7375 327.94 

k-means 

PCA method not used PCA method used 
Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

Cluster 

Number 
Silhouette 

Calinski-

Harabasz 

Davies-

Bouldin 
Time (sec.) 

2 0.4735 191358.71 0.8636 308.32 2 0.5725 306171.31 0.6460 307.01 

3 0.3457 133002.31 1.1954 310.19 3 0.4683 236744.80 0.8033 308.36 

4 0.2865 115761.40 1.4015 308.28 4 0.3974 236892.17 0.9572 307.38 

5 0.3044 106494.23 1.2178 308.33 5 0.4399 244491.62 0.7588 304.21 

6 0.3133 100427.22 1.1099 310.62 6 0.4629 255586.77 0.7273 304.63 

7 0.3342 98201.90 1.0452 305.83 7 0.4920 283283.47 0.6784 306.46 

8 0.3399 96650.46 1.0175 306.28 8 0.5032 294908.29 0.6930 306.59 

9 0.3448 92222.11 1.0824 308.23 9 0.5097 299517.67 0.6446 303.25 

10 0.3543 93525.29 1.0520 305.67 10 0.5224 312876.69 0.6076 304.18 

 

7. Conclusion  

This article examined the advantages and 

disadvantages of data mining, demography, k-

means, and fuzzy c-means algorithms. Fuzzy c-

means and k-means algorithms were used to 

perform the experiment of different volumes of 

demographic data. Through the PCA method, 

the efficiency of these algorithms increased, the 

quality of the clustering results improved and a 

comparative analysis were performed. 

One of the main goals of the PCA method is 

to save time by reducing the number of 

attributes. In the dataset “Economic 

community of central African states statistics, 

2013”, which included the largest attribute in 

the experimented data, when the PCA method 

was applied with both the fuzzy c-means and 

k-means algorithm, it showed good 

performance at all values of the algorithm 

execution time, that is, less time was spent. An 

analogous result was not observed in other 

datasets. 

During experiments, the PCA method 

showed better performance in 165 out of 180 

values in all indicators with the fuzzy c-means 

algorithm, and in 160 out of 180 values with the 

k-means algorithm. It can be concluded from 

the results of the experiment that if all 

indicators are taken into account the PCA 

method is applied, the fuzzy c-means algorithm 

showed better performance than the k-means 

algorithm. 
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