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1. Introduction 

Clustering deals with the problem of 

organizing a collection of objects into clusters 

based on their similarity. It has a wide range of 

applications in many fields (Bagirov, Karmitsa, & 

Taheri, 2020; Castellanos, Cigarran, & Garcia-

Serrano, 2017; Dai et al., 2019; Jain, 2010). The 

similarity measure is a fundamental notion in 

cluster analysis. In data sets with only numeric 

attributes this measure can be defined using 

different norms. Clustering problems with the 

similarity measure defined using the squared 

Euclidean norm have been studied in far more 

detailed than those with similarity measures based 

on other norms (Bagirov, Karmitsa & Taheri, 2020; 

Bai et al., 2013; Karmitsa, Bagirov & Taheri, 2017; 

Karmitsa, Bagirov & Taheri, 2018; Lai & Huang, 

2010; Xavier & Xavier, 2011).   

Clustering algorithms with the similarity 

measure defined using the 𝐿1-norm are more robust 

to outliers than those with the squared Euclidean 

norm (Zhang et al., 2012). These algorithms are 

more preferable in high dimensional data 

(Aggarwal, Hinneburg, & Keim, 2001). They 

produce the highest identification and the best 

verification rates in the speaker recognition systems 

(Hanilci & Ertas, 2011). 

To the best of our knowledge, the paper 

(Carmichael & Sneath, 1969) is the first where the 

clustering problem with the  𝐿1-norm is 

considered. The  𝑘-medians algorithm was 

developed in (Spath, 1976). The ISODATA 

algorithm with the 𝐿1-norm was introduced in 
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evaluate the performance of the adaptive 𝑘-medians algorithm and compare it 

with other concurrent clustering algorithms using 8 real-world data sets. 
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(Jajuga, 1987). In the paper (de Souza R & de 

Carvalho, 2004), the authors introduce adaptive 

and non-adaptive clustering algorithms using the 

 𝐿1- norm.  

The one-dimensional center-based 𝐿1-

clustering algorithm is proposed in (Sabo, 

Scitovski, & Vazler, 2013). The incremental 

algorithms, where clustering functions defined 

using the 𝐿1-norm are approximated by smooth 

functions, are developed in (Bagirov & Mohebi, 

2016; Bagirov & Taheri, 2017). A nonsmoothed 

optimization-based clustering algorithm is 

introduced in (Bagirov, Ordin, & Mohebi, 2020). 

The k-medians algorithm is a fast and easy to 

implement clustering algorithm. It has been 

applied in different areas including detecting 

outliers in noisy data (Friggstad et al., 2019) and 

the local improvement of traveling salesman tours 

(Khachay & Khachay, 2019). This algorithm is 

sensitive to the choice of starting points and finds 

only local solutions that can be significantly 

different from global solutions in large data sets. 

In addition, solutions found by this algorithm 

deteriorate considerably as the size of a data set 

increases. 

An adaptive 𝑘-medians algorithm, proposed 

in this paper, overcomes these difficulties. The 

design of this algorithm is similar to that of the 

modified global k-means algorithm (Bagirov, 

2008). However, its properties and performance 

are different, and their study are worthwhile. The 

algorithm starts with the calculation of the center 

of the whole data set and gradually adds new 

cluster centers. Using an auxiliary clustering 

problem, a special procedure is used to generate 

starting cluster centers. The 𝑘-medians algorithm 

is applied to solve both the clustering and the 

auxiliary clustering problems. Using 

computational results on 8 real-world data sets, 

we analyze the performance of the proposed 

algorithm and compare it with other similar 

clustering algorithms. 

The rest of the paper is organized as follows. 

The descriptions of the 𝑘-medians and the partial 

𝑘-medians algorithms are given in Section 2. An 

algorithm for generating initial cluster centers is 

described in Section 3. An adaptive  𝑘-medians 

algorithm is introduced in Section 4. 

Computational results are reported in Section 5, 

and Section 6 presents conclusions and 

discussions.  

2. 𝒌-medians algorithms 

We start by formulating the clustering and the 

auxiliary clustering problems. 

2.1. Clustering and auxiliary clustering problems 

Assume that a finite set  𝐴 =  {𝑎1, … , 𝑎𝑚} ⊂

ℝ𝑛 is given, where 𝑎𝑖 are data points with  𝑛 

attributes. The hard clustering problem is the 

distribution of the points of the set 𝐴 into a given 

number  𝑘 of nonempty and pairwise disjoint 

subsets (clusters) 𝐴𝑗,  𝑗 ∈  𝐽𝑘 = {1, … , 𝑘} such that 

their union is the set 𝐴. Each cluster 𝐴𝑗 is 

represented by its center 𝑥𝑗  ∈  ℝ𝑛, 𝑗 ∈  𝐽𝑘. We 

define the similarity measure as the distance 

function 𝑑1 defined using the 𝐿1-norm. 

The nonconvex nonsmooth optimization 

model of the clustering problem is (Bagirov & 

Yearwood, 2006): 

{
minimize     𝑓𝑘(𝑥)

subject to   𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛𝑘        (1) 

where 

𝑓𝑘(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min

𝑗∈𝐽𝑘

𝑑1(𝑥𝑗, 𝑎)𝑎∈𝐴 .  (2) 

The function 𝑓𝑘 is called the  𝑘-th cluster 

function and the problem (1) is called the 𝑘-

clustering (𝑘-partition) problem (Bagirov & 

Yearwood, 2006). The problem (1) is also called the 

minimum sum-of-absolutes clustering (MSAC) 

problem. 

Let   𝑥1, … , 𝑥𝑙−1, 𝑙 > 1 be a solution to the (𝑙 −

1)-clustering problem. The function 

𝑓l̅(𝑦) =  
1

𝑚
∑ min{𝑟𝑙−1

𝑎 , 𝑑1(𝑦, 𝑎)}𝑎∈𝐴 ,  𝑦 ∈ ℝ𝑛   (3) 

is called 𝑙-th auxiliary cluster function (Ordin & 

Bagirov, 2015). Here, 

𝑟𝑙−1
𝑎 = min

𝑗∈𝐽𝑙−1

𝑑1(𝑥𝑗 , 𝑎) , 𝑎 ∈ 𝐴.             (4) 

The 𝑙-th auxiliary clustering problem is 

 {
minimize        𝑓l̅(𝑦)

subject to       𝑦 ∈ ℝ𝑛.
                (5) 

Figure 1 illustrates the auxiliary clustering 

function for 𝑙 = 3 in a data set containing 18 points 

from ℝ. We compute the numbers 𝑟2
𝑎 and 

formulate the function 𝑓3̅(𝑦). This function has 
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three local minimizers and there are regions where 

it is a constant. These regions contain points which 

are away from data instances. 

 

 

Fig. 1. Graph of the auxiliary cluster function 𝑓3̅(𝑦). 

2.2. The 𝑘-medians and partial 𝑘-medians algorithms 

In order to solve the 𝑘-clustering problem the 

𝑘-medians algorithm (Spath, 1976): 

Step 1. Selects (randomly) 𝑘 initial cluster 

centers 𝑥1, … , 𝑥𝑘;  

Step 2. Allocates each data point to the closest 

cluster center using the distance function 𝑑1  and 

finds the cluster partition 𝐴1, … , 𝐴𝑘;  

Step 3. Updates cluster centers 𝑥1, … , 𝑥𝑘; as 

vectors of medians of attributes using data points 

from the clusters 𝐴1, … , 𝐴𝑘 respectively;  

Step 4. Repeats Steps 2 and 3 until no data 

point changes its cluster.  

Note that in Step 3, the center of each cluster is 

calculated. For a cluster 𝐶, the problem of finding 

its center can be formulated as 

{
minimize      φ(y) =  

1

|𝐶|
 ∑ 𝑑1(𝑦, 𝑐)𝑐∈𝐶

subject to    𝑦 ∈ ℝ𝑛,
        (6) 

where |𝐶| is the cardinality of the set 𝐶. It is known 

that the coordinates of the solution 𝑦 to this 

problem are medians of the corresponding 

attributes (Bagirov, Karmitsa, & Taheri, 2020; 

Bagirov, Ordin, & Mohebi, 2020; Spath, 1976).  

Next, we describe an algorithm for solving the 

auxiliary clustering problem (5). Let 𝑓𝑙−1(𝑦) =

 
1

𝑚
∑ 𝑟𝑙−1

𝑎
𝑎∈𝐴  be the optimal value of the (𝑙 − 1)-

clustering problem. Following (Ordin & Bagirov, 

2015) consider the sets: 

𝑆1 = {𝑦 ∈ ℝ𝑛: 𝑑1(𝑦, 𝑎) ≥ 𝑟𝑙−1
𝑎  ∀𝑎 ∈ 𝐴}, and 

𝑆2 = {
𝑦 ∈ ℝ𝑛: ∃ �̅� ⊂ 𝐴,  �̅� ≠ ∅: 𝑑1(𝑦, 𝑎) < 𝑟𝑙−1

𝑎  

∀𝑎 ∈ �̅�
} 

Note that 𝑆1 ∩ 𝑆2 = ∅ and 𝑆1 ∪ 𝑆2 =  ℝ𝑛. Starting 

points for solving the problem (5) are chosen from 

the set 𝑆2 as only these points provide the value of 

𝑓�̅� less than the optimal value 𝑓𝑙−1 of the (𝑙 − 1)-

clustering problem. Figure 2 illustrates 𝑆1 and 𝑆2. 

 
Fig. 2. Illustration of sets 𝑆1 and 𝑆2. 

There are four clusters in this figure. Their 

centers are shown by “red” stars. The set 𝑆2 

consists of all points inside four balls except 

cluster centers and the set 𝑆1 contains the centers 

of clusters and the part of the space outside balls.  

A version of the 𝑘-medians algorithm for 

solving the auxiliary clustering problem (5) is 

given in Algorithm 1, where all centers, but the 𝑙-

th center, are fixed. Therefore, we call this version 

the partial 𝑘-medians algorithm. 

Note that the stopping criterion in Step 2 

means that the algorithm terminates when no data 

point moves out or in of the new cluster. Since for 

all points 𝑦𝑞 ∈ 𝑆2 the sets 𝐵(𝑦𝑞), defined in (7), are 

not empty the problem of finding its center in Step 

3 is well defined. The center �̅�c is computed as a 

solution to the problem (6) for 𝐶 = 𝐵(𝑦𝑞). 

 

Algorithm 1. Partial 𝑘-medians algorithm. 

Input. Data set 𝐴  and the solution 

(𝑥1, … , 𝑥𝑙−1 ) ∈ ℝ𝑛(𝑙−1) to the (𝑙 − 1)-partition 

problem, 𝑙 > 1. 

Output. Solution �̅� ∈ ℝ𝑛 to 𝑙-th auxiliary 

clustering problem. 

Step 0. (Initialization) Select a starting point 𝑦1 ∈

𝑆2. Set iteration counter 𝑞 = 1. 

Step 1. Compute the set  

         𝐵(𝑦𝑞) = {𝑎 ∈ 𝐴: 𝑑1(𝑦𝑞 , 𝑎) < 𝑟𝑙−1
𝑎 }.           (7) 

Step 2. (Stopping criterion) If 𝐵(𝑦𝑞) = 𝐵(𝑦𝑞−1) 

for 𝑞 > 1, then the algorithm terminates with 

the solution �̅� =  𝑦𝑞  to the auxiliary clustering 

problem. 

Step 3. Find a center �̅�c of the set 𝐵(𝑦𝑞) by 

computing its coordinates as the medians of the 
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corresponding attributes. 

Step 4. Set 𝑦𝑞+1 = �̅�c, 𝑞 = 𝑞 + 1 and go to Step 1. 

3. Computation of initial cluster centers 

The 𝑘-medians algorithm is a local search 

algorithm and its success in finding high quality 

clustering solutions heavily depends on the choice 

of initial points. In this section, we describe an 

algorithm for generating initial points which are 

“rough” solutions to the clustering problem. The 

similar procedure was introduced in (Ordin & 

Bagirov, 2015). 

Take any 𝑦 ∈ 𝑆2 and divide the set 𝐴 into the 

following two subsets: 

�̅�1(𝑦) = {𝑎 ∈ 𝐴: 𝑑1(𝑦, 𝑎) ≥ 𝑟𝑙−1
𝑎 } and 

�̅�2(𝑦) = {𝑎 ∈ 𝐴: 𝑑1(𝑦, 𝑎) < 𝑟𝑙−1
𝑎 }.  

The set �̅�2(𝑦) contains all data points 𝑎 ∈ 𝐴  which 

are closer to the point 𝑦 than to their cluster 

centers, and the set �̅�1(𝑦) includes all other data 

points. Since 𝑦 ∈ 𝑆2 the set �̅�2(𝑦) ≠ ∅. 

Furthermore, �̅�1(𝑦) ∩ �̅�2(𝑦) = ∅ and 𝐴 = �̅�1(𝑦) ∪

�̅�2(𝑦). Figure 3 depicts the sets �̅�1(𝑦) and �̅�2(𝑦) for 

a given 𝑦 (black ball). There are three clusters in 

this data set and their centers are shown by “red” 

stars. The set �̅�2(𝑦) contains all “yellow” data 

points and the set �̅�1(𝑦) all other points. 

 

 

Fig. 3. Illustration of sets �̅�1(𝑦) and �̅�2(𝑦). 

An algorithm for finding starting points for 

solving the auxiliary clustering problem (5) is 

presented in Algorithm 2. 

 

Algorithm 2. Finding the set of initial points 

for the auxiliary clustering problem. 

Input. The solution (𝑥1, … , 𝑥𝑙−1 ) ∈ ℝ𝑛(𝑙−1) to 

the(𝑙 − 1)-clustering problem, 𝑙 > 1 and 

numbers 𝛾1, 𝛾2 ∈ [0,1].  

Output. The set 𝑆̅ of initial points for the 𝑙-th 

cluster center. 

Step 1. For each 𝑎 ∈ 𝐴\𝑆1, compute  

𝑧𝑙(𝑎) =
1

𝑚
∑ max𝑏∈𝐴 {0, 𝑟𝑙−1

𝑏 − 𝑑1(𝑎, 𝑏)}.      (8) 

Step 2. Compute 

𝑧1𝑚𝑎𝑥 = max
𝑎∈A\𝑆1

𝑧𝑙(𝑎)                        (9) 

and the set  �̅�1 = {𝑎 ∈ 𝐴 \𝑆1: 𝑧𝑙(𝑎) ≥  𝛾1𝑧1𝑚𝑎𝑥}. 

Step 3. For each 𝑎 ∈ �̅�1 compute the set  �̅�2(𝑎)  

and its center 𝑐(𝑎). Denote by �̅�2 the set of all 

such centers. 

Step 4. For each 𝑐 ∈ �̅�2 compute 𝑧2𝑙(𝑐) = 𝑧𝑙(𝑐) 

using (8), then compute 

𝑧2𝑚𝑎𝑥 = max
𝑐∈ �̅�2

𝑧2𝑙(𝑐),                      (10) 

and the set �̅�3 = {𝑐 ∈ �̅�2: 𝑧2𝑙(𝑐) ≥ 𝛾2𝑧2𝑚𝑎𝑥}. Set 

𝑆̅ = �̅�3  and STOP. 

Remark 1. The number 𝑧𝑙(𝑎) given in (8) shows 

the decrease of the value of the 𝑙-th cluster function 

𝑓𝑙 comparing with the value 𝑓𝑙−1(𝑥1, … , 𝑥𝑙−1) if 

points (𝑥1, … , 𝑥𝑙−1, 𝑎) are chosen as cluster centers 

for the l-clustering problem. The number 𝑧1𝑚𝑎𝑥 , 

defined in (9), is the maximum decrease among all 

points of the set 𝐴, and the number 𝑧2𝑚𝑎𝑥, given in 

(10), shows the largest value of decrease among all 

centers 𝑐 ∈  �̅�2. 

Remark 2. Note that the set of starting points 

for solving the auxiliary clustering problem (5) is 

computed using data points from the set 𝐴. The 

use of the parameters 𝛾𝑗 , 𝑗 = 1,2 enables us to 

define thresholds which in turn allow to keep only 

those points providing the significant decrease of 

the clustering function in comparison with its 

value at the previous iteration. The set �̅�3 contains 

all such points which are used as starting points 

for solving the auxiliary clustering problem (5).  

Next, we present an algorithm for finding 

starting points for solving the clustering problem 

(1). This algorithm in its turn applies Algorithms 1 

and 2 to find solutions of the auxiliary clustering 

problem (5). The lowest value of the auxiliary 

function over these solutions are computed and a 

subset of the solutions is defined using this value 

and a predefined threshold. The points from this 

subset are considered as initial points for solving 

the clustering problem (1).  
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4. Adaptive k-medians clustering 

algorithm 

In this section, we introduce an adaptive 𝑘-

medians (AkMed) algorithm for solving the 

clustering problem (1). We also study its time 

complexity and discuss different approaches to 

reduce it. Similar algorithms for solving clustering 

problems with L2-norm are developed, for example, 

in (Bagirov & Yearwood, 2006; Likas, Vlassis, & 

Verbeek, 2003; Ordin & Bagirov, 2015).  

4.1. AkMed algorithm 

AkMed given in Algorithm 4, solves all 

intermediate 𝑙-clustering problems, 𝑙 ∈ 𝐽k−1, in 

addition to the 𝑘-clustering (𝑘 > 1) problem.  

 

Algorithm 3 Finding the set of initial points 

for the clustering problem. 

Input. The solution (𝑥1, … , 𝑥𝑙−1 ) ∈ ℝ𝑛(𝑙−1) to 

the (𝑙 − 1)-clustering problem, 𝑙 > 1 and 

numbers 𝛾1, 𝛾2 ∈ [0,1] and 𝛾3 ∈ [1, ∞). 

Output. The set 𝑆0
𝑙   of initial cluster centers for 

the 𝑙-clustering problem.  

Step 1. Apply Algorithm 2 to compute the set 

�̅�3 of starting points for solving the 𝑙-th 

auxiliary clustering problem (5). 

Step 2. Apply Algorithm 1 to compute the set 

�̅�4 of local minimizers of the auxiliary 

clustering problem (5) using starting points 

from the set �̅�3. 

Step 3. Compute the number 𝑓�̅�
𝑚𝑖𝑛 =

min
𝑦∈�̅�4

𝑓�̅�(𝑦). 

Step 4. Compute the set �̅�5 =  {𝑦 ∈ �̅�4: 𝑓�̅�(𝑦) ≤

𝛾3𝑓�̅�
𝑚𝑖𝑛}. 

Step 5. Construct the set 𝑆0
𝑙 =

{(𝑥1, … , 𝑥𝑙−1 , 𝑦): y ∈ �̅�5} and STOP. 

4.2. Time complexity of the AkMed algorithm  

In this subsection we estimate the time 

complexity of the AkMed algorithm. Such 

estimations for different versions of the 𝑘-medians 

algorithm can be found, for example, in (Ben-

David, 2020; Kumar, Sabharwal, & Sen, 2010) and 

the estimation of the accuracy of one version of 

this algorithm is presented in (Khachay & 

Khachay, 2019). 

The AkMed algorithm involves the calculation 

of cluster centers, distances between data points 

and also distances between data points and cluster 

centers. This algorithm starts with the calculation 

of the center of the whole data set and gradually 

adds one cluster at each iteration. The total 

number of iterations by the 𝑘-medians algorithm 

is 𝑘. The 𝑘-medians algorithm and Algorithms 1, 2 

and 3 are applied at each iteration. Next we describe 

the time complexity of each of these algorithms.  

The time complexity of one distance function 

evaluation is 𝑂(𝑛) where 𝑛 is the number of input 

variables (attributes). The  𝑘-medians algorithm 

requires 𝑂(𝑚𝑙) distance function evaluations at 

the 𝑙-th iteration, 1 ≤ 𝑙 ≤ 𝑘. The complexity of an 

algorithm for finding medians in the worst case 

can be estimated as  𝑂(𝑚2), and therefore, the time 

complexity of one iteration by the  𝑘-medians 

algorithm can be estimated as 𝑂(𝑚𝑛(𝑙 + 𝑚)). 

 

Algorithm 4. The AkMed algorithm. 

Input. Data set 𝐴 and the number of clusters 𝑘 

to be computed.  

Output. Solutions (𝑥1, … , 𝑥𝑙  ) ∈ ℝ𝑛𝑙  to the 𝑙-

clustering problem, 𝑙 = 1, … , 𝑘.  

Step 1. (Initialization) Compute the center 𝑥1 ∈

ℝ𝑛 of the set  𝐴. Set  𝑙 = 1. 

Step 2. (Stopping criterion) Set 𝑙 = 𝑙 + 1. If > 𝑘 , 

then STOP. The 𝑘-clustering problem has been 

solved. 

Step 3. (Computation of a set of initial points) 

Apply Algorithm 3 to compute the set 𝑆0
𝑙  of 

initial cluster centers. 

Step 4. (Computation of a set of cluster centers) 

Take each (𝑦1 , … , 𝑦𝑙  ) ∈  𝑆0
𝑙  as starting cluster 

centers, apply the 𝑘-medians algorithm to solve 

the clustering problem (1) and find a solution 

(�̂�1, … , �̂�𝑙). Let �̅�6 be a set of all solutions 

obtained using starting cluster centers from the 

set 𝑆0
𝑙 . 

Step 5. (Computation of the best solution) 

Compute𝑓𝑙
𝑚𝑖𝑛 = min {𝑓𝑙(�̂�1, … , �̂�𝑙): (�̂�1, … , �̂�𝑙) ∈

�̅�6}, and the collection of centers (�̅�1, … , �̅�𝑙) such 

that 𝑓𝑙(�̅�1, … , �̅�𝑙) = 𝑓𝑙
𝑚𝑖𝑛 . 

Step 6. (Solution to the 𝑙-partition problem) Set 

(𝑥j = �̅�𝑗 , 𝑗 = 1, … , 𝑙 as a solution to the  𝑙-

partition problem and go to Step 2. 
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Since this algorithm is applied starting from 

different points and the number of these points is 

no greater than the total number of points (𝑚) in a 

data set we conclude that the time complexity of 

the 𝑘-medians algorithm is 𝑂(𝑛𝑚2(𝑙 + 𝑚)). Let 𝑇1 

be the maximum number of iterations by the  𝑘-

medians algorithm in one iteration of Algorithm 4. 

Then the total time complexity of the 𝑘-medians 

algorithm in one iteration of Algorithm 4 is 

𝑂(𝑇1𝑛𝑚2(𝑙 + 𝑚)). 

Each iteration of Algorithm 1 requires 𝑂(𝑚) 

distance function evaluations. Each iteration also 

includes the median finding problem, and 

therefore, the time complexity of one iteration by 

this algorithm can be estimated as 𝑂(𝑛𝑚2). 

Algorithm 1 is applied starting from different 

points where the number of these points is no 

greater than 𝑚, and thus, the time complexity of 

Algorithm 1 is 𝑂(𝑛𝑚3). Let 𝑇2 be a maximum 

number of iterations by this algorithm in one 

iteration of Algorithm 4. Then the total time 

complexity of Algorithm 1 in one iteration of 

Algorithm 4 is 𝑂(𝑇2𝑛𝑚3).  

Algorithm 2 requires 𝑂(𝑚) distance function 

evaluations and in the worst case 𝑂(𝑚2) 

operations to compute a data point with the 

maximum decrease of the cluster function. Then, 

the time complexity of this algorithm at each 

iteration of Algorithm 4 can be estimated as 

𝑂(𝑚(𝑛 + 𝑚)).  

Algorithm 3 contains only minimum 

operation, and therefore, the time complexity of 

this algorithm at each iteration of Algorithm 4 is 

𝑂(𝑚2). Summarizing all described above, we 

conclude that the time complexity of Algorithm 4 

can be expressed as 𝑂(𝑘𝑛𝑚3𝑇), where 𝑇 =

max {𝑇1, 𝑇2}.  

4.3. Reduction of complexity 

In this subsection, we discuss three different 

approaches to reduce the computational effort 

required by the AkMed algorithm.  

Reduction of the number of starting cluster centers. 

Starting cluster centers are computed in 

Algorithms 2 and 3. The initial set of such centers 

is defined as 𝐴\𝑆1 in Step 1 of Algorithm 2. At the 

𝑙-th iteration (𝑙 ≥ 2)  of the adaptive algorithm one 

can remove points from the set 𝐴\𝑆1 which are 

close to cluster centers 𝑥1, … , 𝑥𝑙−1. We use the 

following scheme for this purpose. For each 

cluster 𝐴𝑞 , 𝑞 ∈ 𝐽𝑙−1 compute its average radius 

𝑅𝑎𝑣
𝑞

=
1

|𝐴𝑞|
∑ 𝑑1(𝑥𝑞 , 𝑎)𝑎𝜖𝐴𝑞 , and define the subset 

�̂�𝑞 = {𝑎 ∈ 𝐴𝑞: 𝑑1(𝑥𝑞 , 𝑎) ≥ 𝑅𝑎𝑣
𝑞

}. Note that �̂�𝑞 ≠ ∅  

under the assumption that 𝐴𝑞 ≠ ∅. Consider the 

set �̂� = ⋃ �̂�𝑞𝑙−1
𝑞=1 . It is clear that the set �̂� is a subset 

of 𝐴. Replacing the set 𝐴\𝑆1 by the set �̂�\𝑆1 in Step 

1 of Algorithm 2 leads to the reduction of the 

number of starting cluster centers (in some cases 

significantly) since the points that do not provide 

sufficient decrease of the cluster function are 

removed.  

Exclusion of close stationary points. Algorithm 1 

solves the auxiliary clustering problems using 

starting points generated by Algorithm 2. This is 

done in Step 2 of Algorithm 3. Since the partial 𝑘-

medians algorithm may find the same (or close) 

local solutions to the auxiliary clustering problem 

starting from completely different points we can 

remove such points from the set �̅�4 using a 

tolerance 𝜀 > 0. Define 𝜀 = 𝑓1/𝑚𝑙, where 𝑓1 is the 

optimal value of the cluster function 𝑓1, 𝑚 is the 

number of points in the set 𝐴 and 𝑙 is the number 

of clusters. If 𝑑1(�̅�, �̃�) ≤ 𝜀 for two points �̅�, �̃� ∈ �̅�4, 

then we remove one of them and keep another one 

(with the lowest value of the auxiliary cluster 

function). 

Reduction using the triangle inequality. The 

distance function 𝑑1 satisfies the triangle 

inequality. We use this statement to reduce the 

number of distance function calculations both in 

the 𝑘-medians and in the partial 𝑘-medians 

algorithms.  

First, we consider Algorithm 1. Assume that 

𝑥1, … , 𝑥𝑙−1 is the solution to the (𝑙 − 1)-partition 

problem. Let �̂� be a current approximation to the 

solution of the auxiliary clustering problem. 

Compute 𝑑1(�̂�, 𝑥𝑗), 𝑗 ∈ 𝐽𝑙−1, and assume that 𝑎 ∈

𝐴𝑗 for some 𝑗 ∈ 𝐽𝑙−1. According to the triangle 

inequality we have  

𝑑1(�̂�, 𝑥𝑗) ≤ 𝑑1(𝑎, �̂�) + 𝑑1(𝑎, 𝑥𝑗) = 𝑑1(𝑎, �̂�) + 𝑟𝑙−1
𝑎 , 

or        𝑑1(𝑎, �̂�) ≥ 𝑑1(�̂�, 𝑥𝑗) − 𝑟𝑙−1
𝑎 , 

where 𝑟𝑙−1
𝑎  is defined in (4). This means that if 

𝑑1(�̂�, 𝑥𝑗) > 2𝑟𝑙−1
𝑎 , then 𝑑1(𝑎, �̂�) > 𝑟𝑙−1

𝑎 . Therefore, 

there is no need to calculate 𝑑1(𝑎, �̂�) as the point 𝑎 

does not belong to the cluster with the center �̂�. 

This scheme allows us to significantly reduce the 

number of distance function evaluations as the 

number of clusters increases.  

Now consider the 𝑘-medians algorithm. Let 

�̂�1, … , �̂�𝑙 be a current approximation to the solution 

of the 𝑙-partition problem. Compute 𝑑1(�̂�𝑞 , �̂�𝑗) for 
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𝑞, 𝑗 ∈ 𝐽𝑙 , 𝑞 ≠ 𝑗. Assume that for a given point 𝑎 ∈ 𝐴 

distances 𝑑1(𝑎, �̂�𝑞), 𝑞 = 1, … , 𝑗 have been 

calculated for some 𝑗 ∈ 𝐽𝑙−1. Let �̃� ∈ {�̂�1, … , �̂�𝑗} be 

such that 𝑑1(𝑎, �̂�) = min𝑞=1,…,𝑗𝑑1(𝑎, �̂�𝑞). Applying 

the similar approach as in the case of Algorithm 1 

we get that if 𝑑1(�̃�, �̂�𝑗+1) > 2𝑑1(𝑎, �̃�), then there is 

no need to calculate 𝑑1(𝑎, �̂�𝑗+1) as the point 𝑎 does 

not belong to the cluster 𝐴𝑗+1 with the center �̂�𝑗+1. 

Table 1. Brief description of data sets. 

Data sets 𝑚 𝑛 𝑛𝑐 

Page Blocks 5473 10 5 

Gas Sensor Array Drift 13910 128 6 

EEG Eye State 14980 14 2 

Letter Recognition 20000 16 26 

KEGG Metabolic Relation 

Network 

53413 20 – 

Sensorless Drive Diagnosis 58509 48 11 

Pla85900 85900 2 – 

Localization Data for Person 

Activity 

164860 3 11 

5. Numerical experiments 

We carried out numerical experiments using 8 

real-world data sets to evaluate the performance 

of the AkMed algorithm and to compare it with 

some other clustering algorithms. Results of these 

experiments are discussed in this section. 

Data sets. The brief description of data sets is 

given in Table 1, and their detailed descriptions 

can be found in (Dua & Graff, 2019; Reinelt, 1991). 

These data have only numeric attributes and no 

missing values. Some of them have class labels (we 

denote by 𝑛𝑐 number of classes and use “–” if a 

data set has no class label). We computed up to 25 

clusters in all data. 

Performance measures. The performance 

measures used in our evaluations are: 

 Davies-Bouldin cluster validity index (Davies 

& Bouldin, 1979): to determine how well-

separated and compact the clusters are; 

 silhouettes (Rousseeuw, 1987): to 

demonstrate how well a data point is clustered;  

 purity (Dhillon, Fan, & Guan, 2001): to 

show how well the cluster distribution reflects the 

existing class structure of the data. It is applicable 

when the class information is available. 

In addition, in our comparisons, we use the 

relative error 𝐸𝐴𝐿  computed as 𝐸𝐴𝐿 =
�̃�−𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡
×

100%, where 𝑓𝑏𝑒𝑠𝑡 (multiplied by the number 

shown after the name of each data set) is the best 

known value of the cluster function (2) (multiplied 

by 𝑚) for the corresponding number of clusters, 

and 𝑓 is the value of the clustering function (2) 

obtained by an algorithm 𝐴𝐿.  

Clustering algorithms for comparison. We use the 

following clustering algorithms:  

 multi-start 𝑘-medians (MkMed) algorithm;  

 global 𝑘-medians (GkMed) algorithm;  

 𝑘-medians++ (kMed++) algorithm;  

 smooth clustering (SC) algorithm introduced 

in (Bagirov & Mohebi, 2016);  

 incremental DC clustering (IDCC) 

algorithm proposed in (Bagirov & Taheri, 

2017).  

The GkMed algorithm is a special case of the 

AkMed algorithm where the data point providing 

the largest decrease of the cluster function is 

selected as a starting point for the next cluster 

center. The SC and IDCC algorithms use different 

approaches to the one utilized in this paper. In the 

paper (Bagirov & Mohebi, 2016), the objective 

functions in both the clustering and the auxiliary 

clustering problems are approximated by smooth 

functions, and the problems are solved by 

applying a sequential clustering algorithm. In 

(Bagirov & Taheri, 2017), the objective functions 

are formulated using their DC representations. 

Then the DC functions are smoothed partially and 

a DC algorithm is applied to solve the clustering 

and the auxiliary clustering problems with the 

partially smoothed functions. 

Implementation of algorithms. All algorithms 

except kMed++ were implemented in Fortran 95 

and compiled using the gfortran compiler. We 

utilize MATLAB code of kMed++ available in 

(Burkardt, 2021). Computational results are 

obtained on a PC with the Intel(R) Core(TM) i5-

2400S CPU 2.50 GHz and RAM 8 GB. 

The parameters 𝛾1, 𝛾2 and 𝛾3 in the AkMed 

algorithm are selected according to the 

recommendations given in (Ordin & Bagirov, 2015). 

The details of implementation and parameter 

selection of the SC and the IDCC algorithms can be 

found in (Bagirov & Mohebi, 2016) and (Bagirov & 

Taheri, 2017), respectively. For the MkMed 

algorithm, the maximum number of starting points 

was kept big enough and its running time was 

allowed to be no less than twice of the CPU time 

used by the AkMed algorithm. The CPU time used 

by all algorithms was limited to 20 hours. 
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5.1. Performance of the AkMed algorithm 

To demonstrate the performance of the 

AkMed algorithm using evaluation measures 

mentioned above, we select four representative 

data sets from Table 1. 

CPU time. Figure 4 illustrates the dependence 

of the computational time required by the AkMed 

algorithm on the number of clusters. It can be 

observed from these figures that there is no any 

significant increase of the computational time as 

the number of clusters increases. 
 

 
(a) KEGG Metabolic Relation Network 

 
(b) Sensorless Drive Diagnosis 

 
(c) Pla85900 

 
(d) Localization Data for Person Activity 

Fig. 4. CPU time vs. number of clusters 

Number of distance function evaluations. The 

dependence of the number of distance function 

evaluations on the number of clusters is given in 

Figure 5. The results show that increasing the 

number of clusters does not lead to a significant 

increase of the number of distance function 

evaluations. 

 
(a) KEGG Metabolic Relation Network 

 
(b) Sensorless Drive Diagnosis 

 
(c) Pla85900 

 
(d) Localization Data for Person Activity 

Fig. 5. Number of distance function evaluations vs. 

number of clusters. 
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Davies-Bouldin cluster validity index. The DB 

indices obtained by the AkMed algorithm are given 

in Figure 6. Since all data sets contain a large number 

of clusters, we consider the DB indices only for 𝑘 >

5. According to the DB index the number of compact 

and well-separated clusters obtained by the AkMed 

algorithm are as follows: Page Blocks - 9; EEG Eye 

State - 7; Letter Recognition - 22; Sensorless Drive 

Diagnosis - 13.  

Silhouette plots. We draw the silhouette plots for 

the AkMed algorithm using data set: Page Blocks 

with 𝑘 = 2, 3, 5, 10. The plots for this data set are 

displayed in Figure 7. In all cases there is one large 

cluster whose points are well seated in this cluster. 

Other clusters contain misclassified instances, 

however, the number of misclassified points tends to 

decrease as the number of clusters increases. Note 

that Page Blocks data set has one very large class 

containing almost 89% of all instances. In addition, 

this data set also contains noise. These plots show 

that the AkMed algorithm is capable of finding well-

separated clusters even in such data sets. 

 
(a) Page Blocks 

 
(b) EEG Eye State 

 
(c) Letter Recognition 

 
(d) Sensorless Drive Diagnosis 

Fig. 6. Results for DB index. 

 
(a) AkMed, 𝑘 = 2                 (b) AkMed, 𝑘 = 3 

 
(c) AkMed, 𝑘 = 5              (d) AkMed, 𝑘 = 10 

Fig. 7. Silhouette plots for Page Blocks data set. 

Purity. Results for the purity of clusters obtained 

by the AkMed algorithm are depicted in Figure 8. 

The purity depends on the number of clusters and 

existing classes. In general, the purity increases as the 

number of clusters increases. However, this 

observation is not always true for EEG Eye State data 

set. This is due to the fact in this data set one point is 

far away from the rest of the data set. For the 2-

clustering problem one of the clusters contain only 

this point. 
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(a) Page Blocks 

 
(b) EEG Eye State 

 
(c) Letter Recognition 

 
(d) Sensorless Drive Diagnosis 

Fig. 8. Results for Purity. 

 

Results on the robustness. To demonstrate the 

robustness of the AkMed algorithm to outliers we 

consider a synthetic data set in the 2-dimensional 

space. This data set is given in Figure 9 where 

clustering results in data sets both with outliers and 

without outliers are depicted. There are four clusters 

in this data and cluster centers are shown using black 

dots. We can see that adding outliers does not lead to 

any changes of cluster structure. Moreover, there is 

no significant changes in locations of cluster centers. 

We can conclude that the AkMed algorithm is robust 

to outliers in this data set.  

5.2. Comparison with other clustering algorithms  

Next, we compare the AkMed algorithm with 

other clustering algorithms mentioned above. We 

use optimal values of the cluster function obtained by 

algorithms to compare their accuracy. The results are 

given in Table 2. The notation “fail” used in this table 

means that an algorithm fails to compute clusters in 

the given time frame. 

 
(a) Data set with no outliers 

 
(b) Clustering results with no outliers 
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(c) Data set with outliers 

 
(d) Clustering results with outliers 

Fig. 9. Robustness of AkMed algorithm. 

We can see from Table 2 that the AkMed 

algorithm outperforms (in some cases 

substantially) the MkMed algorithm in the data 

sets: EEG Eye State (𝑘 ≥ 15), KEGG Network (𝑘 ≥

10) and Localization Data for Person Activity. The 

MkMed algorithm fails to find any solution (in the 

given time frame) in Localization Data for Person 

Activity data set whereas the AkMed algorithm is 

able to find solutions with high accuracy. In other 

data sets the performances of these two algorithms 

are similar. We can also see that in most data sets 

the AkMed and MkMed algorithms perform 

similarly when the number of clusters 𝑘 is small. 

Overall, the AkMed algorithm outperforms 

the GkMed algorithm. However, the difference is 

not significant as the GkMed algorithm is a special 

case of the AkMed algorithm. Results for Page 

Blocks data set show that the AkMed algorithm 

outperforms the GkMed algorithm when a data set 

does not have well separated clusters. The AkMed 

algorithm is more accurate than the kMed++ 

algorithm in all data sets.  

Furthermore, the results show that the AkMed 

algorithm outperforms the SC algorithm in the 

data sets: Page Blocks, Letter Recognition, KEGG 

Network and Pla85900. In other data sets the 

performances of these algorithms are similar. The 

SC algorithm fails to find solution in Gas Sensor 

Array Drift (𝑘 ≥ 10). This data set contains a large 

number of attributes and results demonstrate that 

the SC algorithm becomes highly time consuming 

in such data sets. 

Finally, the AkMed algorithm has a better 

performance than the IDCC algorithm in the data 

sets: Page Blocks (𝑘 ≥ 10), Gas Sensor Array Drift 

(𝑘 ≥ 5), KEGG Network (𝑘 ≥ 20) and Sensorless 

Drive Diagnosis (𝑘 ≥ 20). In other data sets these 

algorithms perform similarly. Results presented in 

this subsection demonstrate that in these eight 

data sets the performance of the AkMed algorithm 

in finding accurate solutions is either similar or 

better than that of other clustering algorithms used 

for comparison. 

 
Table 2: Relative errors for different clustering algorithms 

 

𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸AkMed 𝐸MkMed 𝐸GkMed 𝐸kMed++ 𝐸SC 𝐸IDCC  𝑓𝑏𝑒𝑠𝑡 𝐸AkMed 𝐸MkMed 𝐸GkMed 𝐸kMed++ 𝐸SC 𝐸IDCC 

Page Blocks (×E6)  Gas Sensor Array Drift (×E9) 

2 8.41 0.00 25.28 0.00 68.85 0.00 0.00  2.27 0.00 0.00 0.00 3.48 0.00 0.95 

3 6.75 0.00 0.00 0.00 49.10 0.00 0.00  1.90 0.00 0.00 0.00 2.65 0.00 0.88 

5 4.88 0.00 0.00 0.00 27.06 0.00 0.03  1.45 0.00 0.00 0.00 2.22 0.01 8.37 

10 3.07 0.00 17.28 0.01 14.77 3.36 3.52  1.06 0.00 0.92 0.02 1.57 fail 5.73 

15 2.48 0.00 27.04 1.78 10.03 3.33 4.64  0.89 0.45 0.00 0.50 1.39 fail 7.50 

20 2.18 0.00 26.06 0.44 7.95 0.61 3.05  0.78 0.00 1.83 0.00 1.26 fail 8.09 

25 1.95 0.00 30.40 0.62 6.85 1.58 4.13  0.71 0.00 2.87 0.00 1.12 fail 8.36 

EEG Eye State (×E6)  Letter Recognition (×E5) 

2 5.29 0.00 15.46 0.00 14.83 0.00 0.00  4.83 0.00 0.00 0.00 1.86 0.02 0.00 

3 4.20 0.00 38.65 0.00 4.37 0.00 0.00  4.58 0.00 0.07 0.00 1.73 5.67 0.03 

5 2.94 0.00 86.96 0.00 0.06 0.00 0.00  4.23 0.00 0.04 0.00 1.55 8.79 1.65 

10 2.17 0.00 139.40 0.00 0.02 0.04 0.04  3.76 0.00 0.57 0.59 1.29 9.07 0.35 

15 1.97 0.00 156.50 0.00 0.17 0.00 0.36  3.52 0.00 0.30 0.02 1.13 3.85 0.05 

20 1.83 0.21 170.84 0.21 0.15 0.00 0.03  3.33 0.06 0.30 0.00 1.03 4.47 0.02 

25 1.74 0.00 140.01 0.18 0.14 0.08 0.20  3.19 0.02 0.62 0.00 0.98 3.40 0.05 
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KEGG Network (×E6)  Sensorless Drive Diagnosis (×E6) 

2 3.59 0.00 0.00 0.00 3.56 1.08 0.12  1.25 0.00 0.00 0.00 0.30 0.00 0.01 

3 2.80 0.00 0.00 0.00 3.71 0.04 0.27  1.17 0.00 0.00 0.00 0.24 0.13 0.23 

5 2.08 1.19 1.50 1.19 8.55 1.26 0.00  1.08 0.00 0.26 0.00 0.18 0.52 0.16 

10 1.44 0.00 4.55 0.02 39.74 4.64 0.91  0.94 0.00 0.00 0.06 1.10 0.34 0.24 

15 1.20 0.00 7.27 0.00 28.58 0.98 1.12  0.87 0.00 0.51 0.01 8.21 0.85 0.15 

20 1.06 0.00 15.08 0.80 26.65 1.68 1.62  0.82 0.00 1.05 0.00 53.23 0.54 6.17 

25 0.97 0.00 16.60 0.00 19.82 2.79 2.14  0.79 0.00 0.63 0.02 45.34 0.73 10.35 

Pla85900 (×E10)  Localization Data for Person Activity (×E5) 

2 2.07 0.00 0.42 0.38 1.84 0.19 0.00  1.76 0.00 fail 0.00 4.88 0.00 0.00 

3 1.63 0.00 0.29 0.00 1.41 0.51 0.27  1.52 0.17 fail 0.17 4.10 0.00 0.00 

5 1.26 0.15 0.00 0.15 1.07 1.80 0.12  1.27 0.00 fail 0.00 3.41 0.00 0.00 

10 0.89 0.08 0.07 0.10 7.67 1.57 0.00  0.96 0.01 fail 0.01 2.48 0.00 0.01 

15 0.73 0.23 0.00 0.23 6.34 1.31 0.07  0.85 0.01 fail 0.01 2.11 0.00 0.01 

20 0.64 0.11 0.00 0.41 5.57 1.24 0.22  0.77 0.00 fail 0.00 fail 0.07 0.00 

25 0.57 0.10 0.05 0.10 5.02 1.62 0.00  0.72 0.00 fail 0.00 fail 0.18 0.00 

6. Conclusions and discussions 

In this paper, we introduced the adaptive 𝑘-

medians (AkMed) clustering algorithm where the 

similarity measure is defined using the 𝐿1-norm. 

The AkMed algorithm computes clusters gradually 

starting from one cluster which is the median of the 

whole data set and adds one cluster center at each 

iteration. An auxiliary clustering problem is used to 

design an algorithm for finding initial cluster 

centers. Both the clustering and the auxiliary 

clustering problems are solved using the 𝑘-medians 

algorithm. We presented the estimation of the 

number of distance function evaluations required 

by the AkMed algorithm and described different 

approaches to reduce this number.  

The proposed algorithm was tested and 

compared with other clustering algorithms using 

8 real-world data sets. Selected data sets are 

diverse in the sense of the number of data points 

and the number of attributes. Based on the results 

of the numerical experiments we draw the 

following conclusions: 

 CPU time and the number of distance function 

calls required by the AkMed algorithm 

increase linearly or almost linearly as the 

number of clusters increases;  

 the AkMed algorithm is robust to outliers 

when they are well separated from other data 

points and constitute a small portion of a data 

set. This claim is not conclusive as more 

detailed research is required to study the 

robustness of the AkMed algorithm 

depending on different types of outliers;  

 the AkMed algorithm is able to find accurate 

solutions in more data sets than any other 

clustering algorithms used in numerical 

experiments;  

 using the Davies-Bouldin cluster validity 

index we can see that the AkMed algorithm is 

able to compute the small number of well-

separated and compact clusters. Moreover, 

using the silhouette plots we showed that 

most data points are well located in clusters 

found by the AkMed algorithm; 

 the AkMed algorithm has some limitations. 

This algorithm becomes time consuming in 

data sets containing hundreds of thousands of 

data points and therefore, it is not applicable 

to very large data sets. Although the AkMed 

algorithm is able to find compact clusters, 

results on silhouettes show that these clusters 

are not always well separated. These 

drawbacks will be addressed in future 

research. 
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