
Problems of Information Technology (2022), vol. 13, no. 2, 3-15

3

AN ADAPTIVE 𝑘-MEDIANS CLUSTERING ALGORITHM

Adil M. Bagirov 1,a, Sona Taheri 2,a,b, Burak Ordin 3,c

a School of Engineering, Information Technology and Physical Sciences, Federation University Australia, Ballarat, Australia

b School of Mathematical Sciences, RMIT University, Melbourne, Australia

c Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey

1 a.bagirov@federation.edu.au; 2 sona.taheri@rmit.edu.au; 3 burak.ordin@ege.edu.tr

 1 0000-0003-2075-1699; 2 0000-0003-1779-4567; 3 0000-0001-7897-3265

1. Introduction

Clustering deals with the problem of

organizing a collection of objects into clusters

based on their similarity. It has a wide range of

applications in many fields (Bagirov, Karmitsa, &

Taheri, 2020; Castellanos, Cigarran, & Garcia-

Serrano, 2017; Dai et al., 2019; Jain, 2010). The

similarity measure is a fundamental notion in

cluster analysis. In data sets with only numeric

attributes this measure can be defined using

different norms. Clustering problems with the

similarity measure defined using the squared

Euclidean norm have been studied in far more

detailed than those with similarity measures based

on other norms (Bagirov, Karmitsa & Taheri, 2020;

Bai et al., 2013; Karmitsa, Bagirov & Taheri, 2017;

Karmitsa, Bagirov & Taheri, 2018; Lai & Huang,

2010; Xavier & Xavier, 2011).

Clustering algorithms with the similarity

measure defined using the 𝐿1-norm are more robust

to outliers than those with the squared Euclidean

norm (Zhang et al., 2012). These algorithms are

more preferable in high dimensional data

(Aggarwal, Hinneburg, & Keim, 2001). They

produce the highest identification and the best

verification rates in the speaker recognition systems

(Hanilci & Ertas, 2011).

To the best of our knowledge, the paper

(Carmichael & Sneath, 1969) is the first where the

clustering problem with the 𝐿1-norm is

considered. The 𝑘-medians algorithm was

developed in (Spath, 1976). The ISODATA

algorithm with the 𝐿1-norm was introduced in

13 (2)

2022

 Available online at www.jpit.az

A R T I C L E I N F O

http://doi.org/10.25045/jpit.v13.i2.01

Article history:

Received 14 March 2022

Received in revised form 27 May 2022

Accepted 17 June 2022

Keywords:

Cluster analysis

𝑘-medians algorithm

Adaptive clustering

 A B S T R A C T

A new version of the 𝑘-medians algorithm, the adaptive k-medians algorithm,

is introduced to solve clustering problems with the similarity measure defined

using the 𝐿1-norm. The proposed algorithm first calculates the center of the whole

data set as its median. To solve the 𝑘-clustering problem (𝑘 > 1), we formulate

the auxiliary clustering problem to generate a set of starting points for the 𝑘-th

cluster center. Then, the 𝑘-medians algorithm is applied starting from the

previous (𝑘 − 1) cluster centers and each point from the set of starting points to

solve the 𝑘-clustering problem. A solution with the least value of the

clustering function is accepted as the solution to the 𝑘-clustering problem. We

evaluate the performance of the adaptive 𝑘-medians algorithm and compare it

with other concurrent clustering algorithms using 8 real-world data sets.

mailto:a.bagirov@federation.edu.au
mailto:sona.taheri@rmit.edu.au
http://www.orcid.org/0000-0003-2075-1699
https://www.orcid.org/0000-0003-1779-4567
https://www.orcid.org/0000-0001-7897-3265
http://doi.org/10.25045/jpit.v13.i2.01

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

4

(Jajuga, 1987). In the paper (de Souza R & de

Carvalho, 2004), the authors introduce adaptive

and non-adaptive clustering algorithms using the

 𝐿1- norm.

The one-dimensional center-based 𝐿1-

clustering algorithm is proposed in (Sabo,

Scitovski, & Vazler, 2013). The incremental

algorithms, where clustering functions defined

using the 𝐿1-norm are approximated by smooth

functions, are developed in (Bagirov & Mohebi,

2016; Bagirov & Taheri, 2017). A nonsmoothed

optimization-based clustering algorithm is

introduced in (Bagirov, Ordin, & Mohebi, 2020).

The k-medians algorithm is a fast and easy to

implement clustering algorithm. It has been

applied in different areas including detecting

outliers in noisy data (Friggstad et al., 2019) and

the local improvement of traveling salesman tours

(Khachay & Khachay, 2019). This algorithm is

sensitive to the choice of starting points and finds

only local solutions that can be significantly

different from global solutions in large data sets.

In addition, solutions found by this algorithm

deteriorate considerably as the size of a data set

increases.

An adaptive 𝑘-medians algorithm, proposed

in this paper, overcomes these difficulties. The

design of this algorithm is similar to that of the

modified global k-means algorithm (Bagirov,

2008). However, its properties and performance

are different, and their study are worthwhile. The

algorithm starts with the calculation of the center

of the whole data set and gradually adds new

cluster centers. Using an auxiliary clustering

problem, a special procedure is used to generate

starting cluster centers. The 𝑘-medians algorithm

is applied to solve both the clustering and the

auxiliary clustering problems. Using

computational results on 8 real-world data sets,

we analyze the performance of the proposed

algorithm and compare it with other similar

clustering algorithms.

The rest of the paper is organized as follows.

The descriptions of the 𝑘-medians and the partial

𝑘-medians algorithms are given in Section 2. An

algorithm for generating initial cluster centers is

described in Section 3. An adaptive 𝑘-medians

algorithm is introduced in Section 4.

Computational results are reported in Section 5,

and Section 6 presents conclusions and

discussions.

2. 𝒌-medians algorithms

We start by formulating the clustering and the

auxiliary clustering problems.

2.1. Clustering and auxiliary clustering problems

Assume that a finite set 𝐴 = {𝑎1, … , 𝑎𝑚} ⊂

ℝ𝑛 is given, where 𝑎𝑖 are data points with 𝑛

attributes. The hard clustering problem is the

distribution of the points of the set 𝐴 into a given

number 𝑘 of nonempty and pairwise disjoint

subsets (clusters) 𝐴𝑗, 𝑗 ∈ 𝐽𝑘 = {1, … , 𝑘} such that

their union is the set 𝐴. Each cluster 𝐴𝑗 is

represented by its center 𝑥𝑗 ∈ ℝ𝑛, 𝑗 ∈ 𝐽𝑘. We

define the similarity measure as the distance

function 𝑑1 defined using the 𝐿1-norm.

The nonconvex nonsmooth optimization

model of the clustering problem is (Bagirov &

Yearwood, 2006):

{
minimize 𝑓𝑘(𝑥)

subject to 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ ℝ𝑛𝑘 (1)

where

𝑓𝑘(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min

𝑗∈𝐽𝑘

𝑑1(𝑥𝑗, 𝑎)𝑎∈𝐴 . (2)

The function 𝑓𝑘 is called the 𝑘-th cluster

function and the problem (1) is called the 𝑘-

clustering (𝑘-partition) problem (Bagirov &

Yearwood, 2006). The problem (1) is also called the

minimum sum-of-absolutes clustering (MSAC)

problem.

Let 𝑥1, … , 𝑥𝑙−1, 𝑙 > 1 be a solution to the (𝑙 −

1)-clustering problem. The function

𝑓l̅(𝑦) =
1

𝑚
∑ min{𝑟𝑙−1

𝑎 , 𝑑1(𝑦, 𝑎)}𝑎∈𝐴 , 𝑦 ∈ ℝ𝑛 (3)

is called 𝑙-th auxiliary cluster function (Ordin &

Bagirov, 2015). Here,

𝑟𝑙−1
𝑎 = min

𝑗∈𝐽𝑙−1

𝑑1(𝑥𝑗 , 𝑎) , 𝑎 ∈ 𝐴. (4)

The 𝑙-th auxiliary clustering problem is

 {
minimize 𝑓l̅(𝑦)

subject to 𝑦 ∈ ℝ𝑛.
 (5)

Figure 1 illustrates the auxiliary clustering

function for 𝑙 = 3 in a data set containing 18 points

from ℝ. We compute the numbers 𝑟2
𝑎 and

formulate the function 𝑓3̅(𝑦). This function has

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

5

three local minimizers and there are regions where

it is a constant. These regions contain points which

are away from data instances.

Fig. 1. Graph of the auxiliary cluster function 𝑓3̅(𝑦).

2.2. The 𝑘-medians and partial 𝑘-medians algorithms

In order to solve the 𝑘-clustering problem the

𝑘-medians algorithm (Spath, 1976):

Step 1. Selects (randomly) 𝑘 initial cluster

centers 𝑥1, … , 𝑥𝑘;

Step 2. Allocates each data point to the closest

cluster center using the distance function 𝑑1 and

finds the cluster partition 𝐴1, … , 𝐴𝑘;

Step 3. Updates cluster centers 𝑥1, … , 𝑥𝑘; as

vectors of medians of attributes using data points

from the clusters 𝐴1, … , 𝐴𝑘 respectively;

Step 4. Repeats Steps 2 and 3 until no data

point changes its cluster.

Note that in Step 3, the center of each cluster is

calculated. For a cluster 𝐶, the problem of finding

its center can be formulated as

{
minimize φ(y) =

1

|𝐶|
 ∑ 𝑑1(𝑦, 𝑐)𝑐∈𝐶

subject to 𝑦 ∈ ℝ𝑛,
 (6)

where |𝐶| is the cardinality of the set 𝐶. It is known

that the coordinates of the solution 𝑦 to this

problem are medians of the corresponding

attributes (Bagirov, Karmitsa, & Taheri, 2020;

Bagirov, Ordin, & Mohebi, 2020; Spath, 1976).

Next, we describe an algorithm for solving the

auxiliary clustering problem (5). Let 𝑓𝑙−1(𝑦) =

1

𝑚
∑ 𝑟𝑙−1

𝑎
𝑎∈𝐴 be the optimal value of the (𝑙 − 1)-

clustering problem. Following (Ordin & Bagirov,

2015) consider the sets:

𝑆1 = {𝑦 ∈ ℝ𝑛: 𝑑1(𝑦, 𝑎) ≥ 𝑟𝑙−1
𝑎 ∀𝑎 ∈ 𝐴}, and

𝑆2 = {
𝑦 ∈ ℝ𝑛: ∃ �̅� ⊂ 𝐴, �̅� ≠ ∅: 𝑑1(𝑦, 𝑎) < 𝑟𝑙−1

𝑎

∀𝑎 ∈ �̅�
}

Note that 𝑆1 ∩ 𝑆2 = ∅ and 𝑆1 ∪ 𝑆2 = ℝ𝑛. Starting

points for solving the problem (5) are chosen from

the set 𝑆2 as only these points provide the value of

𝑓�̅� less than the optimal value 𝑓𝑙−1 of the (𝑙 − 1)-

clustering problem. Figure 2 illustrates 𝑆1 and 𝑆2.

Fig. 2. Illustration of sets 𝑆1 and 𝑆2.

There are four clusters in this figure. Their

centers are shown by “red” stars. The set 𝑆2

consists of all points inside four balls except

cluster centers and the set 𝑆1 contains the centers

of clusters and the part of the space outside balls.

A version of the 𝑘-medians algorithm for

solving the auxiliary clustering problem (5) is

given in Algorithm 1, where all centers, but the 𝑙-

th center, are fixed. Therefore, we call this version

the partial 𝑘-medians algorithm.

Note that the stopping criterion in Step 2

means that the algorithm terminates when no data

point moves out or in of the new cluster. Since for

all points 𝑦𝑞 ∈ 𝑆2 the sets 𝐵(𝑦𝑞), defined in (7), are

not empty the problem of finding its center in Step

3 is well defined. The center �̅�c is computed as a

solution to the problem (6) for 𝐶 = 𝐵(𝑦𝑞).

Algorithm 1. Partial 𝑘-medians algorithm.

Input. Data set 𝐴 and the solution

(𝑥1, … , 𝑥𝑙−1) ∈ ℝ𝑛(𝑙−1) to the (𝑙 − 1)-partition

problem, 𝑙 > 1.

Output. Solution �̅� ∈ ℝ𝑛 to 𝑙-th auxiliary

clustering problem.

Step 0. (Initialization) Select a starting point 𝑦1 ∈

𝑆2. Set iteration counter 𝑞 = 1.

Step 1. Compute the set

 𝐵(𝑦𝑞) = {𝑎 ∈ 𝐴: 𝑑1(𝑦𝑞 , 𝑎) < 𝑟𝑙−1
𝑎 }. (7)

Step 2. (Stopping criterion) If 𝐵(𝑦𝑞) = 𝐵(𝑦𝑞−1)

for 𝑞 > 1, then the algorithm terminates with

the solution �̅� = 𝑦𝑞 to the auxiliary clustering

problem.

Step 3. Find a center �̅�c of the set 𝐵(𝑦𝑞) by

computing its coordinates as the medians of the

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

6

corresponding attributes.

Step 4. Set 𝑦𝑞+1 = �̅�c, 𝑞 = 𝑞 + 1 and go to Step 1.

3. Computation of initial cluster centers

The 𝑘-medians algorithm is a local search

algorithm and its success in finding high quality

clustering solutions heavily depends on the choice

of initial points. In this section, we describe an

algorithm for generating initial points which are

“rough” solutions to the clustering problem. The

similar procedure was introduced in (Ordin &

Bagirov, 2015).

Take any 𝑦 ∈ 𝑆2 and divide the set 𝐴 into the

following two subsets:

�̅�1(𝑦) = {𝑎 ∈ 𝐴: 𝑑1(𝑦, 𝑎) ≥ 𝑟𝑙−1
𝑎 } and

�̅�2(𝑦) = {𝑎 ∈ 𝐴: 𝑑1(𝑦, 𝑎) < 𝑟𝑙−1
𝑎 }.

The set �̅�2(𝑦) contains all data points 𝑎 ∈ 𝐴 which

are closer to the point 𝑦 than to their cluster

centers, and the set �̅�1(𝑦) includes all other data

points. Since 𝑦 ∈ 𝑆2 the set �̅�2(𝑦) ≠ ∅.

Furthermore, �̅�1(𝑦) ∩ �̅�2(𝑦) = ∅ and 𝐴 = �̅�1(𝑦) ∪

�̅�2(𝑦). Figure 3 depicts the sets �̅�1(𝑦) and �̅�2(𝑦) for

a given 𝑦 (black ball). There are three clusters in

this data set and their centers are shown by “red”

stars. The set �̅�2(𝑦) contains all “yellow” data

points and the set �̅�1(𝑦) all other points.

Fig. 3. Illustration of sets �̅�1(𝑦) and �̅�2(𝑦).

An algorithm for finding starting points for

solving the auxiliary clustering problem (5) is

presented in Algorithm 2.

Algorithm 2. Finding the set of initial points

for the auxiliary clustering problem.

Input. The solution (𝑥1, … , 𝑥𝑙−1) ∈ ℝ𝑛(𝑙−1) to

the(𝑙 − 1)-clustering problem, 𝑙 > 1 and

numbers 𝛾1, 𝛾2 ∈ [0,1].

Output. The set 𝑆̅ of initial points for the 𝑙-th

cluster center.

Step 1. For each 𝑎 ∈ 𝐴\𝑆1, compute

𝑧𝑙(𝑎) =
1

𝑚
∑ max𝑏∈𝐴 {0, 𝑟𝑙−1

𝑏 − 𝑑1(𝑎, 𝑏)}. (8)

Step 2. Compute

𝑧1𝑚𝑎𝑥 = max
𝑎∈A\𝑆1

𝑧𝑙(𝑎) (9)

and the set �̅�1 = {𝑎 ∈ 𝐴 \𝑆1: 𝑧𝑙(𝑎) ≥ 𝛾1𝑧1𝑚𝑎𝑥}.

Step 3. For each 𝑎 ∈ �̅�1 compute the set �̅�2(𝑎)

and its center 𝑐(𝑎). Denote by �̅�2 the set of all

such centers.

Step 4. For each 𝑐 ∈ �̅�2 compute 𝑧2𝑙(𝑐) = 𝑧𝑙(𝑐)

using (8), then compute

𝑧2𝑚𝑎𝑥 = max
𝑐∈ �̅�2

𝑧2𝑙(𝑐), (10)

and the set �̅�3 = {𝑐 ∈ �̅�2: 𝑧2𝑙(𝑐) ≥ 𝛾2𝑧2𝑚𝑎𝑥}. Set

𝑆̅ = �̅�3 and STOP.

Remark 1. The number 𝑧𝑙(𝑎) given in (8) shows

the decrease of the value of the 𝑙-th cluster function

𝑓𝑙 comparing with the value 𝑓𝑙−1(𝑥1, … , 𝑥𝑙−1) if

points (𝑥1, … , 𝑥𝑙−1, 𝑎) are chosen as cluster centers

for the l-clustering problem. The number 𝑧1𝑚𝑎𝑥 ,

defined in (9), is the maximum decrease among all

points of the set 𝐴, and the number 𝑧2𝑚𝑎𝑥, given in

(10), shows the largest value of decrease among all

centers 𝑐 ∈ �̅�2.

Remark 2. Note that the set of starting points

for solving the auxiliary clustering problem (5) is

computed using data points from the set 𝐴. The

use of the parameters 𝛾𝑗 , 𝑗 = 1,2 enables us to

define thresholds which in turn allow to keep only

those points providing the significant decrease of

the clustering function in comparison with its

value at the previous iteration. The set �̅�3 contains

all such points which are used as starting points

for solving the auxiliary clustering problem (5).

Next, we present an algorithm for finding

starting points for solving the clustering problem

(1). This algorithm in its turn applies Algorithms 1

and 2 to find solutions of the auxiliary clustering

problem (5). The lowest value of the auxiliary

function over these solutions are computed and a

subset of the solutions is defined using this value

and a predefined threshold. The points from this

subset are considered as initial points for solving

the clustering problem (1).

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

7

4. Adaptive k-medians clustering

algorithm

In this section, we introduce an adaptive 𝑘-

medians (AkMed) algorithm for solving the

clustering problem (1). We also study its time

complexity and discuss different approaches to

reduce it. Similar algorithms for solving clustering

problems with L2-norm are developed, for example,

in (Bagirov & Yearwood, 2006; Likas, Vlassis, &

Verbeek, 2003; Ordin & Bagirov, 2015).

4.1. AkMed algorithm

AkMed given in Algorithm 4, solves all

intermediate 𝑙-clustering problems, 𝑙 ∈ 𝐽k−1, in

addition to the 𝑘-clustering (𝑘 > 1) problem.

Algorithm 3 Finding the set of initial points

for the clustering problem.

Input. The solution (𝑥1, … , 𝑥𝑙−1) ∈ ℝ𝑛(𝑙−1) to

the (𝑙 − 1)-clustering problem, 𝑙 > 1 and

numbers 𝛾1, 𝛾2 ∈ [0,1] and 𝛾3 ∈ [1, ∞).

Output. The set 𝑆0
𝑙 of initial cluster centers for

the 𝑙-clustering problem.

Step 1. Apply Algorithm 2 to compute the set

�̅�3 of starting points for solving the 𝑙-th

auxiliary clustering problem (5).

Step 2. Apply Algorithm 1 to compute the set

�̅�4 of local minimizers of the auxiliary

clustering problem (5) using starting points

from the set �̅�3.

Step 3. Compute the number 𝑓�̅�
𝑚𝑖𝑛 =

min
𝑦∈�̅�4

𝑓�̅�(𝑦).

Step 4. Compute the set �̅�5 = {𝑦 ∈ �̅�4: 𝑓�̅�(𝑦) ≤

𝛾3𝑓�̅�
𝑚𝑖𝑛}.

Step 5. Construct the set 𝑆0
𝑙 =

{(𝑥1, … , 𝑥𝑙−1 , 𝑦): y ∈ �̅�5} and STOP.

4.2. Time complexity of the AkMed algorithm

In this subsection we estimate the time

complexity of the AkMed algorithm. Such

estimations for different versions of the 𝑘-medians

algorithm can be found, for example, in (Ben-

David, 2020; Kumar, Sabharwal, & Sen, 2010) and

the estimation of the accuracy of one version of

this algorithm is presented in (Khachay &

Khachay, 2019).

The AkMed algorithm involves the calculation

of cluster centers, distances between data points

and also distances between data points and cluster

centers. This algorithm starts with the calculation

of the center of the whole data set and gradually

adds one cluster at each iteration. The total

number of iterations by the 𝑘-medians algorithm

is 𝑘. The 𝑘-medians algorithm and Algorithms 1, 2

and 3 are applied at each iteration. Next we describe

the time complexity of each of these algorithms.

The time complexity of one distance function

evaluation is 𝑂(𝑛) where 𝑛 is the number of input

variables (attributes). The 𝑘-medians algorithm

requires 𝑂(𝑚𝑙) distance function evaluations at

the 𝑙-th iteration, 1 ≤ 𝑙 ≤ 𝑘. The complexity of an

algorithm for finding medians in the worst case

can be estimated as 𝑂(𝑚2), and therefore, the time

complexity of one iteration by the 𝑘-medians

algorithm can be estimated as 𝑂(𝑚𝑛(𝑙 + 𝑚)).

Algorithm 4. The AkMed algorithm.

Input. Data set 𝐴 and the number of clusters 𝑘

to be computed.

Output. Solutions (𝑥1, … , 𝑥𝑙) ∈ ℝ𝑛𝑙 to the 𝑙-

clustering problem, 𝑙 = 1, … , 𝑘.

Step 1. (Initialization) Compute the center 𝑥1 ∈

ℝ𝑛 of the set 𝐴. Set 𝑙 = 1.

Step 2. (Stopping criterion) Set 𝑙 = 𝑙 + 1. If > 𝑘 ,

then STOP. The 𝑘-clustering problem has been

solved.

Step 3. (Computation of a set of initial points)

Apply Algorithm 3 to compute the set 𝑆0
𝑙 of

initial cluster centers.

Step 4. (Computation of a set of cluster centers)

Take each (𝑦1 , … , 𝑦𝑙) ∈ 𝑆0
𝑙 as starting cluster

centers, apply the 𝑘-medians algorithm to solve

the clustering problem (1) and find a solution

(�̂�1, … , �̂�𝑙). Let �̅�6 be a set of all solutions

obtained using starting cluster centers from the

set 𝑆0
𝑙 .

Step 5. (Computation of the best solution)

Compute𝑓𝑙
𝑚𝑖𝑛 = min {𝑓𝑙(�̂�1, … , �̂�𝑙): (�̂�1, … , �̂�𝑙) ∈

�̅�6}, and the collection of centers (�̅�1, … , �̅�𝑙) such

that 𝑓𝑙(�̅�1, … , �̅�𝑙) = 𝑓𝑙
𝑚𝑖𝑛 .

Step 6. (Solution to the 𝑙-partition problem) Set

(𝑥j = �̅�𝑗 , 𝑗 = 1, … , 𝑙 as a solution to the 𝑙-

partition problem and go to Step 2.

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

8

Since this algorithm is applied starting from

different points and the number of these points is

no greater than the total number of points (𝑚) in a

data set we conclude that the time complexity of

the 𝑘-medians algorithm is 𝑂(𝑛𝑚2(𝑙 + 𝑚)). Let 𝑇1

be the maximum number of iterations by the 𝑘-

medians algorithm in one iteration of Algorithm 4.

Then the total time complexity of the 𝑘-medians

algorithm in one iteration of Algorithm 4 is

𝑂(𝑇1𝑛𝑚2(𝑙 + 𝑚)).

Each iteration of Algorithm 1 requires 𝑂(𝑚)

distance function evaluations. Each iteration also

includes the median finding problem, and

therefore, the time complexity of one iteration by

this algorithm can be estimated as 𝑂(𝑛𝑚2).

Algorithm 1 is applied starting from different

points where the number of these points is no

greater than 𝑚, and thus, the time complexity of

Algorithm 1 is 𝑂(𝑛𝑚3). Let 𝑇2 be a maximum

number of iterations by this algorithm in one

iteration of Algorithm 4. Then the total time

complexity of Algorithm 1 in one iteration of

Algorithm 4 is 𝑂(𝑇2𝑛𝑚3).

Algorithm 2 requires 𝑂(𝑚) distance function

evaluations and in the worst case 𝑂(𝑚2)

operations to compute a data point with the

maximum decrease of the cluster function. Then,

the time complexity of this algorithm at each

iteration of Algorithm 4 can be estimated as

𝑂(𝑚(𝑛 + 𝑚)).

Algorithm 3 contains only minimum

operation, and therefore, the time complexity of

this algorithm at each iteration of Algorithm 4 is

𝑂(𝑚2). Summarizing all described above, we

conclude that the time complexity of Algorithm 4

can be expressed as 𝑂(𝑘𝑛𝑚3𝑇), where 𝑇 =

max {𝑇1, 𝑇2}.

4.3. Reduction of complexity

In this subsection, we discuss three different

approaches to reduce the computational effort

required by the AkMed algorithm.

Reduction of the number of starting cluster centers.

Starting cluster centers are computed in

Algorithms 2 and 3. The initial set of such centers

is defined as 𝐴\𝑆1 in Step 1 of Algorithm 2. At the

𝑙-th iteration (𝑙 ≥ 2) of the adaptive algorithm one

can remove points from the set 𝐴\𝑆1 which are

close to cluster centers 𝑥1, … , 𝑥𝑙−1. We use the

following scheme for this purpose. For each

cluster 𝐴𝑞 , 𝑞 ∈ 𝐽𝑙−1 compute its average radius

𝑅𝑎𝑣
𝑞

=
1

|𝐴𝑞|
∑ 𝑑1(𝑥𝑞 , 𝑎)𝑎𝜖𝐴𝑞 , and define the subset

�̂�𝑞 = {𝑎 ∈ 𝐴𝑞: 𝑑1(𝑥𝑞 , 𝑎) ≥ 𝑅𝑎𝑣
𝑞

}. Note that �̂�𝑞 ≠ ∅

under the assumption that 𝐴𝑞 ≠ ∅. Consider the

set �̂� = ⋃ �̂�𝑞𝑙−1
𝑞=1 . It is clear that the set �̂� is a subset

of 𝐴. Replacing the set 𝐴\𝑆1 by the set �̂�\𝑆1 in Step

1 of Algorithm 2 leads to the reduction of the

number of starting cluster centers (in some cases

significantly) since the points that do not provide

sufficient decrease of the cluster function are

removed.

Exclusion of close stationary points. Algorithm 1

solves the auxiliary clustering problems using

starting points generated by Algorithm 2. This is

done in Step 2 of Algorithm 3. Since the partial 𝑘-

medians algorithm may find the same (or close)

local solutions to the auxiliary clustering problem

starting from completely different points we can

remove such points from the set �̅�4 using a

tolerance 𝜀 > 0. Define 𝜀 = 𝑓1/𝑚𝑙, where 𝑓1 is the

optimal value of the cluster function 𝑓1, 𝑚 is the

number of points in the set 𝐴 and 𝑙 is the number

of clusters. If 𝑑1(�̅�, �̃�) ≤ 𝜀 for two points �̅�, �̃� ∈ �̅�4,

then we remove one of them and keep another one

(with the lowest value of the auxiliary cluster

function).

Reduction using the triangle inequality. The

distance function 𝑑1 satisfies the triangle

inequality. We use this statement to reduce the

number of distance function calculations both in

the 𝑘-medians and in the partial 𝑘-medians

algorithms.

First, we consider Algorithm 1. Assume that

𝑥1, … , 𝑥𝑙−1 is the solution to the (𝑙 − 1)-partition

problem. Let �̂� be a current approximation to the

solution of the auxiliary clustering problem.

Compute 𝑑1(�̂�, 𝑥𝑗), 𝑗 ∈ 𝐽𝑙−1, and assume that 𝑎 ∈

𝐴𝑗 for some 𝑗 ∈ 𝐽𝑙−1. According to the triangle

inequality we have

𝑑1(�̂�, 𝑥𝑗) ≤ 𝑑1(𝑎, �̂�) + 𝑑1(𝑎, 𝑥𝑗) = 𝑑1(𝑎, �̂�) + 𝑟𝑙−1
𝑎 ,

or 𝑑1(𝑎, �̂�) ≥ 𝑑1(�̂�, 𝑥𝑗) − 𝑟𝑙−1
𝑎 ,

where 𝑟𝑙−1
𝑎 is defined in (4). This means that if

𝑑1(�̂�, 𝑥𝑗) > 2𝑟𝑙−1
𝑎 , then 𝑑1(𝑎, �̂�) > 𝑟𝑙−1

𝑎 . Therefore,

there is no need to calculate 𝑑1(𝑎, �̂�) as the point 𝑎

does not belong to the cluster with the center �̂�.

This scheme allows us to significantly reduce the

number of distance function evaluations as the

number of clusters increases.

Now consider the 𝑘-medians algorithm. Let

�̂�1, … , �̂�𝑙 be a current approximation to the solution

of the 𝑙-partition problem. Compute 𝑑1(�̂�𝑞 , �̂�𝑗) for

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

9

𝑞, 𝑗 ∈ 𝐽𝑙 , 𝑞 ≠ 𝑗. Assume that for a given point 𝑎 ∈ 𝐴

distances 𝑑1(𝑎, �̂�𝑞), 𝑞 = 1, … , 𝑗 have been

calculated for some 𝑗 ∈ 𝐽𝑙−1. Let �̃� ∈ {�̂�1, … , �̂�𝑗} be

such that 𝑑1(𝑎, �̂�) = min𝑞=1,…,𝑗𝑑1(𝑎, �̂�𝑞). Applying

the similar approach as in the case of Algorithm 1

we get that if 𝑑1(�̃�, �̂�𝑗+1) > 2𝑑1(𝑎, �̃�), then there is

no need to calculate 𝑑1(𝑎, �̂�𝑗+1) as the point 𝑎 does

not belong to the cluster 𝐴𝑗+1 with the center �̂�𝑗+1.

Table 1. Brief description of data sets.

Data sets 𝑚 𝑛 𝑛𝑐

Page Blocks 5473 10 5

Gas Sensor Array Drift 13910 128 6

EEG Eye State 14980 14 2

Letter Recognition 20000 16 26

KEGG Metabolic Relation

Network

53413 20 –

Sensorless Drive Diagnosis 58509 48 11

Pla85900 85900 2 –

Localization Data for Person

Activity

164860 3 11

5. Numerical experiments

We carried out numerical experiments using 8

real-world data sets to evaluate the performance

of the AkMed algorithm and to compare it with

some other clustering algorithms. Results of these

experiments are discussed in this section.

Data sets. The brief description of data sets is

given in Table 1, and their detailed descriptions

can be found in (Dua & Graff, 2019; Reinelt, 1991).

These data have only numeric attributes and no

missing values. Some of them have class labels (we

denote by 𝑛𝑐 number of classes and use “–” if a

data set has no class label). We computed up to 25

clusters in all data.

Performance measures. The performance

measures used in our evaluations are:

 Davies-Bouldin cluster validity index (Davies

& Bouldin, 1979): to determine how well-

separated and compact the clusters are;

 silhouettes (Rousseeuw, 1987): to

demonstrate how well a data point is clustered;

 purity (Dhillon, Fan, & Guan, 2001): to

show how well the cluster distribution reflects the

existing class structure of the data. It is applicable

when the class information is available.

In addition, in our comparisons, we use the

relative error 𝐸𝐴𝐿 computed as 𝐸𝐴𝐿 =
�̃�−𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡
×

100%, where 𝑓𝑏𝑒𝑠𝑡 (multiplied by the number

shown after the name of each data set) is the best

known value of the cluster function (2) (multiplied

by 𝑚) for the corresponding number of clusters,

and 𝑓 is the value of the clustering function (2)

obtained by an algorithm 𝐴𝐿.

Clustering algorithms for comparison. We use the

following clustering algorithms:

 multi-start 𝑘-medians (MkMed) algorithm;

 global 𝑘-medians (GkMed) algorithm;

 𝑘-medians++ (kMed++) algorithm;

 smooth clustering (SC) algorithm introduced

in (Bagirov & Mohebi, 2016);

 incremental DC clustering (IDCC)

algorithm proposed in (Bagirov & Taheri,

2017).

The GkMed algorithm is a special case of the

AkMed algorithm where the data point providing

the largest decrease of the cluster function is

selected as a starting point for the next cluster

center. The SC and IDCC algorithms use different

approaches to the one utilized in this paper. In the

paper (Bagirov & Mohebi, 2016), the objective

functions in both the clustering and the auxiliary

clustering problems are approximated by smooth

functions, and the problems are solved by

applying a sequential clustering algorithm. In

(Bagirov & Taheri, 2017), the objective functions

are formulated using their DC representations.

Then the DC functions are smoothed partially and

a DC algorithm is applied to solve the clustering

and the auxiliary clustering problems with the

partially smoothed functions.

Implementation of algorithms. All algorithms

except kMed++ were implemented in Fortran 95

and compiled using the gfortran compiler. We

utilize MATLAB code of kMed++ available in

(Burkardt, 2021). Computational results are

obtained on a PC with the Intel(R) Core(TM) i5-

2400S CPU 2.50 GHz and RAM 8 GB.

The parameters 𝛾1, 𝛾2 and 𝛾3 in the AkMed

algorithm are selected according to the

recommendations given in (Ordin & Bagirov, 2015).

The details of implementation and parameter

selection of the SC and the IDCC algorithms can be

found in (Bagirov & Mohebi, 2016) and (Bagirov &

Taheri, 2017), respectively. For the MkMed

algorithm, the maximum number of starting points

was kept big enough and its running time was

allowed to be no less than twice of the CPU time

used by the AkMed algorithm. The CPU time used

by all algorithms was limited to 20 hours.

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

10

5.1. Performance of the AkMed algorithm

To demonstrate the performance of the

AkMed algorithm using evaluation measures

mentioned above, we select four representative

data sets from Table 1.

CPU time. Figure 4 illustrates the dependence

of the computational time required by the AkMed

algorithm on the number of clusters. It can be

observed from these figures that there is no any

significant increase of the computational time as

the number of clusters increases.

(a) KEGG Metabolic Relation Network

(b) Sensorless Drive Diagnosis

(c) Pla85900

(d) Localization Data for Person Activity

Fig. 4. CPU time vs. number of clusters

Number of distance function evaluations. The

dependence of the number of distance function

evaluations on the number of clusters is given in

Figure 5. The results show that increasing the

number of clusters does not lead to a significant

increase of the number of distance function

evaluations.

(a) KEGG Metabolic Relation Network

(b) Sensorless Drive Diagnosis

(c) Pla85900

(d) Localization Data for Person Activity

Fig. 5. Number of distance function evaluations vs.

number of clusters.

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

11

Davies-Bouldin cluster validity index. The DB

indices obtained by the AkMed algorithm are given

in Figure 6. Since all data sets contain a large number

of clusters, we consider the DB indices only for 𝑘 >

5. According to the DB index the number of compact

and well-separated clusters obtained by the AkMed

algorithm are as follows: Page Blocks - 9; EEG Eye

State - 7; Letter Recognition - 22; Sensorless Drive

Diagnosis - 13.

Silhouette plots. We draw the silhouette plots for

the AkMed algorithm using data set: Page Blocks

with 𝑘 = 2, 3, 5, 10. The plots for this data set are

displayed in Figure 7. In all cases there is one large

cluster whose points are well seated in this cluster.

Other clusters contain misclassified instances,

however, the number of misclassified points tends to

decrease as the number of clusters increases. Note

that Page Blocks data set has one very large class

containing almost 89% of all instances. In addition,

this data set also contains noise. These plots show

that the AkMed algorithm is capable of finding well-

separated clusters even in such data sets.

(a) Page Blocks

(b) EEG Eye State

(c) Letter Recognition

(d) Sensorless Drive Diagnosis

Fig. 6. Results for DB index.

(a) AkMed, 𝑘 = 2 (b) AkMed, 𝑘 = 3

(c) AkMed, 𝑘 = 5 (d) AkMed, 𝑘 = 10

Fig. 7. Silhouette plots for Page Blocks data set.

Purity. Results for the purity of clusters obtained

by the AkMed algorithm are depicted in Figure 8.

The purity depends on the number of clusters and

existing classes. In general, the purity increases as the

number of clusters increases. However, this

observation is not always true for EEG Eye State data

set. This is due to the fact in this data set one point is

far away from the rest of the data set. For the 2-

clustering problem one of the clusters contain only

this point.

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

12

(a) Page Blocks

(b) EEG Eye State

(c) Letter Recognition

(d) Sensorless Drive Diagnosis

Fig. 8. Results for Purity.

Results on the robustness. To demonstrate the

robustness of the AkMed algorithm to outliers we

consider a synthetic data set in the 2-dimensional

space. This data set is given in Figure 9 where

clustering results in data sets both with outliers and

without outliers are depicted. There are four clusters

in this data and cluster centers are shown using black

dots. We can see that adding outliers does not lead to

any changes of cluster structure. Moreover, there is

no significant changes in locations of cluster centers.

We can conclude that the AkMed algorithm is robust

to outliers in this data set.

5.2. Comparison with other clustering algorithms

Next, we compare the AkMed algorithm with

other clustering algorithms mentioned above. We

use optimal values of the cluster function obtained by

algorithms to compare their accuracy. The results are

given in Table 2. The notation “fail” used in this table

means that an algorithm fails to compute clusters in

the given time frame.

(a) Data set with no outliers

(b) Clustering results with no outliers

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

13

(c) Data set with outliers

(d) Clustering results with outliers

Fig. 9. Robustness of AkMed algorithm.

We can see from Table 2 that the AkMed

algorithm outperforms (in some cases

substantially) the MkMed algorithm in the data

sets: EEG Eye State (𝑘 ≥ 15), KEGG Network (𝑘 ≥

10) and Localization Data for Person Activity. The

MkMed algorithm fails to find any solution (in the

given time frame) in Localization Data for Person

Activity data set whereas the AkMed algorithm is

able to find solutions with high accuracy. In other

data sets the performances of these two algorithms

are similar. We can also see that in most data sets

the AkMed and MkMed algorithms perform

similarly when the number of clusters 𝑘 is small.

Overall, the AkMed algorithm outperforms

the GkMed algorithm. However, the difference is

not significant as the GkMed algorithm is a special

case of the AkMed algorithm. Results for Page

Blocks data set show that the AkMed algorithm

outperforms the GkMed algorithm when a data set

does not have well separated clusters. The AkMed

algorithm is more accurate than the kMed++

algorithm in all data sets.

Furthermore, the results show that the AkMed

algorithm outperforms the SC algorithm in the

data sets: Page Blocks, Letter Recognition, KEGG

Network and Pla85900. In other data sets the

performances of these algorithms are similar. The

SC algorithm fails to find solution in Gas Sensor

Array Drift (𝑘 ≥ 10). This data set contains a large

number of attributes and results demonstrate that

the SC algorithm becomes highly time consuming

in such data sets.

Finally, the AkMed algorithm has a better

performance than the IDCC algorithm in the data

sets: Page Blocks (𝑘 ≥ 10), Gas Sensor Array Drift

(𝑘 ≥ 5), KEGG Network (𝑘 ≥ 20) and Sensorless

Drive Diagnosis (𝑘 ≥ 20). In other data sets these

algorithms perform similarly. Results presented in

this subsection demonstrate that in these eight

data sets the performance of the AkMed algorithm

in finding accurate solutions is either similar or

better than that of other clustering algorithms used

for comparison.

Table 2: Relative errors for different clustering algorithms

𝑘 𝑓𝑏𝑒𝑠𝑡 𝐸AkMed 𝐸MkMed 𝐸GkMed 𝐸kMed++ 𝐸SC 𝐸IDCC 𝑓𝑏𝑒𝑠𝑡 𝐸AkMed 𝐸MkMed 𝐸GkMed 𝐸kMed++ 𝐸SC 𝐸IDCC

Page Blocks (×E6) Gas Sensor Array Drift (×E9)

2 8.41 0.00 25.28 0.00 68.85 0.00 0.00 2.27 0.00 0.00 0.00 3.48 0.00 0.95

3 6.75 0.00 0.00 0.00 49.10 0.00 0.00 1.90 0.00 0.00 0.00 2.65 0.00 0.88

5 4.88 0.00 0.00 0.00 27.06 0.00 0.03 1.45 0.00 0.00 0.00 2.22 0.01 8.37

10 3.07 0.00 17.28 0.01 14.77 3.36 3.52 1.06 0.00 0.92 0.02 1.57 fail 5.73

15 2.48 0.00 27.04 1.78 10.03 3.33 4.64 0.89 0.45 0.00 0.50 1.39 fail 7.50

20 2.18 0.00 26.06 0.44 7.95 0.61 3.05 0.78 0.00 1.83 0.00 1.26 fail 8.09

25 1.95 0.00 30.40 0.62 6.85 1.58 4.13 0.71 0.00 2.87 0.00 1.12 fail 8.36

EEG Eye State (×E6) Letter Recognition (×E5)

2 5.29 0.00 15.46 0.00 14.83 0.00 0.00 4.83 0.00 0.00 0.00 1.86 0.02 0.00

3 4.20 0.00 38.65 0.00 4.37 0.00 0.00 4.58 0.00 0.07 0.00 1.73 5.67 0.03

5 2.94 0.00 86.96 0.00 0.06 0.00 0.00 4.23 0.00 0.04 0.00 1.55 8.79 1.65

10 2.17 0.00 139.40 0.00 0.02 0.04 0.04 3.76 0.00 0.57 0.59 1.29 9.07 0.35

15 1.97 0.00 156.50 0.00 0.17 0.00 0.36 3.52 0.00 0.30 0.02 1.13 3.85 0.05

20 1.83 0.21 170.84 0.21 0.15 0.00 0.03 3.33 0.06 0.30 0.00 1.03 4.47 0.02

25 1.74 0.00 140.01 0.18 0.14 0.08 0.20 3.19 0.02 0.62 0.00 0.98 3.40 0.05

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

14

KEGG Network (×E6) Sensorless Drive Diagnosis (×E6)

2 3.59 0.00 0.00 0.00 3.56 1.08 0.12 1.25 0.00 0.00 0.00 0.30 0.00 0.01

3 2.80 0.00 0.00 0.00 3.71 0.04 0.27 1.17 0.00 0.00 0.00 0.24 0.13 0.23

5 2.08 1.19 1.50 1.19 8.55 1.26 0.00 1.08 0.00 0.26 0.00 0.18 0.52 0.16

10 1.44 0.00 4.55 0.02 39.74 4.64 0.91 0.94 0.00 0.00 0.06 1.10 0.34 0.24

15 1.20 0.00 7.27 0.00 28.58 0.98 1.12 0.87 0.00 0.51 0.01 8.21 0.85 0.15

20 1.06 0.00 15.08 0.80 26.65 1.68 1.62 0.82 0.00 1.05 0.00 53.23 0.54 6.17

25 0.97 0.00 16.60 0.00 19.82 2.79 2.14 0.79 0.00 0.63 0.02 45.34 0.73 10.35

Pla85900 (×E10) Localization Data for Person Activity (×E5)

2 2.07 0.00 0.42 0.38 1.84 0.19 0.00 1.76 0.00 fail 0.00 4.88 0.00 0.00

3 1.63 0.00 0.29 0.00 1.41 0.51 0.27 1.52 0.17 fail 0.17 4.10 0.00 0.00

5 1.26 0.15 0.00 0.15 1.07 1.80 0.12 1.27 0.00 fail 0.00 3.41 0.00 0.00

10 0.89 0.08 0.07 0.10 7.67 1.57 0.00 0.96 0.01 fail 0.01 2.48 0.00 0.01

15 0.73 0.23 0.00 0.23 6.34 1.31 0.07 0.85 0.01 fail 0.01 2.11 0.00 0.01

20 0.64 0.11 0.00 0.41 5.57 1.24 0.22 0.77 0.00 fail 0.00 fail 0.07 0.00

25 0.57 0.10 0.05 0.10 5.02 1.62 0.00 0.72 0.00 fail 0.00 fail 0.18 0.00

6. Conclusions and discussions

In this paper, we introduced the adaptive 𝑘-

medians (AkMed) clustering algorithm where the

similarity measure is defined using the 𝐿1-norm.

The AkMed algorithm computes clusters gradually

starting from one cluster which is the median of the

whole data set and adds one cluster center at each

iteration. An auxiliary clustering problem is used to

design an algorithm for finding initial cluster

centers. Both the clustering and the auxiliary

clustering problems are solved using the 𝑘-medians

algorithm. We presented the estimation of the

number of distance function evaluations required

by the AkMed algorithm and described different

approaches to reduce this number.

The proposed algorithm was tested and

compared with other clustering algorithms using

8 real-world data sets. Selected data sets are

diverse in the sense of the number of data points

and the number of attributes. Based on the results

of the numerical experiments we draw the

following conclusions:

 CPU time and the number of distance function

calls required by the AkMed algorithm

increase linearly or almost linearly as the

number of clusters increases;

 the AkMed algorithm is robust to outliers

when they are well separated from other data

points and constitute a small portion of a data

set. This claim is not conclusive as more

detailed research is required to study the

robustness of the AkMed algorithm

depending on different types of outliers;

 the AkMed algorithm is able to find accurate

solutions in more data sets than any other

clustering algorithms used in numerical

experiments;

 using the Davies-Bouldin cluster validity

index we can see that the AkMed algorithm is

able to compute the small number of well-

separated and compact clusters. Moreover,

using the silhouette plots we showed that

most data points are well located in clusters

found by the AkMed algorithm;

 the AkMed algorithm has some limitations.

This algorithm becomes time consuming in

data sets containing hundreds of thousands of

data points and therefore, it is not applicable

to very large data sets. Although the AkMed

algorithm is able to find compact clusters,

results on silhouettes show that these clusters

are not always well separated. These

drawbacks will be addressed in future

research.

References

Aggarwal C, Hinneburg A, Keim D. (2001). On the surprising

behavior of distance metrics in high dimensional space. In:

ICDT ’01 Proceedings of the 8th International Conference

on Database Theory (pp.420–434).

Bagirov A, Karmitsa N, Taheri S. (2020). Partitional Clustering

via Nonsmooth Optimization. Springer, Cham..

Bagirov A, Mohebi E. (2016). An algorithm for clustering using

L1-norm based on hyperbolic smoothing technique.

Computational Intelligence, 32, 439–57.

Bagirov A, Ordin B, Mohebi E. (2020). An incremental

nonsmooth optimization algorithm for clustering using L1

and l∞ norms. Journal of Industrial and Management

Optimization, 16(6), 2757-2779.

Bagirov A, Taheri S. (2017). A DC optimization algorithm for

clustering problems with L1-norm. Iranian Journal of

Operations Research, 8(2), 2–24.

Bagirov A, Yearwood J. (2006). A new nonsmooth optimization

algorithm for minimum sum-of-squares clustering

problems. European Journal of Operational

Research,170(2), 578–596.

Bagirov A. (2008). Modified global k-means algorithm for

minimum sum-of-squares clustering problems. Pattern

Recognition 41(10), 3192–3199.

Problems of Information Technology (2022), vol. 13, no. 2, 3-15

15

Bai L, Liang J, Sui C, Dang C. (2013). Fast global k-means

clustering based on local geometrical information.

Information Sciences, 245, 168–80.

Ben-David S. (2020). Computational feasibility of clustering

under clusterability assumptions. 2020.

https://arxiv.org/abs/1501.00437.

Burkardt J. (2021) https://people.sc.fsu.edu/~jburkardt/

Carmichael J, Sneath P. (1969). Taxometric maps. Systematic

Zoology, 18, 402–415.

Castellanos A, Cigarran J, Garcıa-Serrano A. (2017). Formal

concept analysis for topic detection: A clustering quality

experimental analysis. Information Systems, 66, 24-42.

Dai Q, Xiong Z, Xie J, Wang X, Zhang Y, Shang J. (2019). A

novel clustering algorithm based on the natural reverse

nearest neighbor structure. Information Systems, 84, 1-16.

Davies D, Bouldin D. (1979). A cluster separation measure.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1(2), 224-227.

Dhillon, I.S., Fan, J., Guan, Y. (2001). Efficient clustering of very

large document collections. In: Grossman, R.L., Kamath, C.,

Kegelmeyer, P., Kumar, V., Namburu, R.R. (eds) Data

Mining for Scientific and Engineering Applications.

Massive Computing, vol.2., pp.357-381.

Dua D, Graff C. (2019). UCI Machine Learning Repository.

University of California, Irvine, School of Information and

Computer Sciences, http: //archive.ics.uci.edu/ml.

Friggstad Z, Khodamoradi K, Rezapour M, Salavatipour M.

(2019). Approximation schemes for clustering with

outliers. ACM Transactions on Algorithms,15(2), 1-26.

Hanilci C, Ertas F. (2011). Comparison of the impact of some

Minkowski metrics on vq/gmm based speaker recognition.

Computers and Electrical Engineering, 37, 41-56.

Jain A. (2010). Data clustering: 50 years beyond k-means.

Pattern Recognition Letters, 31(8), 651-666.

Jajuga K. (1987). A clustering method based on the L1-norm.

Computational Statistics & Data Analysis, 5(4), 357-371.

Karmitsa N, Bagirov A, Taheri S. (2017). New diagonal bundle

method for clustering problems in large data sets.

European Journal of Operational Research, 263(2), 367-379.

Karmitsa N, Bagirov A, Taheri S. (2018). Clustering in large

data sets with the limited memory bundle method. Pattern

Recognition, 83, 245–259.

Khachay M, Khachay D. (2019). Attainable accuracy guarantee

for the k-medians clustering in [0,1]. Optimization Letters,

13, 1837-1853.

Kumar A, Sabharwal Y, Sen S. (2010). Linear-time

approximation schemes for clustering problems in any

dimensions. Journal of the ACM, 57(2), Article 5.

Lai J, Huang TJ. (2010). Fast global k-means clustering using

cluster membership and inequality. Pattern Recognition,

43(5), 1954-1963.

Likas A, Vlassis N, Verbeek J. (2003). The global k-means

clustering algorithm. Pattern Recognition, 36(2), 451-461.

Ordin B, Bagirov A. (2015). A heuristic algorithm for solving

the minimum sum-ofsquares clustering problems. Journal

of Global Optimization, 61(2), 341-361.

Reinelt G. (1991). TSP-LIB-A Traveling Salesman Library.

ORSA Journal on Computing, 3, 319-350.

Rousseeuw P. (1987). Silhouettes: Graphical aid to interpret

and validate of cluster analysis. Journal of Computational

and Applied Mathematics, 20, 53-65.

Sabo K, Scitovski R, Vazler I. (2013). One-dimensional center-based

L1-clustering method. Optimization Letters, 7(1), 5-22.

de Souza R, de Carvalho F. (2004). Clustering of interval data

based on city-block distances. Pattern Recognition Letters,

25, 353-365.

Spath H. (1976). Algorithm 30: 𝐿1 cluster analysis. Computing,

16(4), 379-387.

Xavier A, Xavier V. (2011). Solving the minimum sum-of-

squares clustering problem by hyperbolic smoothing and

partition into boundary and gravitational regions. Pattern

Recognition, 44(1), 70-77.

Zhang J, Peng L, Zhao X, Kuruoglu E. (2012). Robust data

clustering by learning multimetric Lq-norm distances.

Expert Systems with Applications, 39, 335-349.

https://arxiv.org/abs/1501.00437

