НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА
МОДЕЛЬ КВАДРАТИЧНОГО БУЛЕВОГО ПРОГРАММИРОВАНИЯ И БИНАРНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ ЭВОЛЮЦИОННЫЙ АЛГОРИТМ ДЛЯ РЕФЕРИРОВАНИЯ ТЕКСТОВ (англ.)
Алгулиев Расим М., Алыгулиев Рамиз М., Гаджирагимова Макруфа Ш.

В статье проблема автоматического реферирования текстов сформулирована как задача квадратичного программирования с булевыми переменными. Предложенная модель позволяет формировать оптимальный реферат текстов. Для решения задачи оптимизации разработан бинарный алгоритм дифференциальной эволюции. (стр. 20-29)

Ключевые слова: реферирование текстов, максимальный охват, наименьшая избыточность, оптимизационная модель, алгоритм дифференциальной эволюции
Литература
  • Hung S.Y., Tang K.Z., Chang C.M., Ke C.D. User acceptance of intergovernmental services: an example of electronic document management system // Government Information Quarterly, 2009, vol.26, №2, pp. 387–397.
  • Ko Y. and Seo J. An effective sentence-extraction technique using contextual information and statistical approaches for text summarization // Pattern Recognition Letters, 2008, vol.29, №9, pp.1366–1371.
  • Mani I. and Maybury M.T. Advances in automatic text summarization, MIT Press, Cambridge, 1999, 442 pp.
  • Ouyang Y., Li W., Li S., Lu Q. Applying regression models to query-focused multi-document summarization // Information Processing & Management, 2011, vol.47, №2, pp.227–237.
  • Kutlu M., Cigir C., Cicekli I. Generic text summarization for Turkish // The Computer Journal, 2010, vol.53, №8, pp.1315-1323.
  • Wan X., Xiao J. Exploiting neighborhood knowledge for single document summarization and keyphrase extraction // ACM Transactions on Information Systems, 2010, vol.28, №2, 8:1–8:34.
  • Tang J., Yao L., Chen D. Multi-topic based query-oriented summarization / Proceedings of the 9th SIAM International Conference on Data Mining, Nevada, USA, 2009, april 30 may 2, pp.1148–1159.
  • McDonald R. A study of global inference algorithms in multi-document summarization / Proceedings of the 29th European Conference on IR Research, Rome, Italy, Springer-Verlag, LNCS, 2007, April 2‒5, №25, pp. 557‒564.
  • Wang Y., Li B., Weise T. Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems // Information Sciences, 2010, vol.180, №12, pp.2405–2420.
  • Chali Y., Hasan S.A., Joty S.R. Improving graph-based random walks for complex question answering using syntactic, shallow semantic and extended string subsequence kernels // Information Processing & Management, 2011, vol.47, №6, pp. 843-855.
  • Huang L., He Y., Wei F., Li W. Modeling document summarization as multi-objective optimization / Proceedings of the Third International Symposium on Intelligent Information Technology and Security Informatics, Jinggangshan, China, 2010, april 02–04, pp.382–386.
  • He R., Qin B., Liu T. A novel approach to update summarization using evolutionary manifold-ranking and spectral clustering // Expert Systems with Applications, 2012, vol.39, №3, pp.2375–2384.
  • Aliguliyev R.M. A new sentence similarity measure and sentence based extractivetechnique for automatic text summarization // Expert Systems with Applications, 2009, vol.36, №4, pp.7764‒7772.
  • Aliguliyev R.M. Performance evaluation of density-based clustering methods // Information Sciences, 2009, vol.179, №20, pp.3583–3602.
  • Islam A., Inkpen D. Semantic text similarity using corpus-based word similarity and string similarity // ACM Transactions on Knowledge Discovery from Data, 2008, vol.2, №2, pp.10:1-10:25.
  • Tsai F.S., Tang W., Chan K.L. Evaluation of novelty metrics for sentence-level novelty mining // Information Sciences, 2010, vol.180, №12, pp.2359–2374.
  • Wenyin L., Quan X., Feng M., Qiu B. A short text modeling method combining semantic and statistical information // Information Sciences, 2010, vol.180, no.20, pp.4031–4041.
  • Alguliev M., Aliguliyev R.M. Evolutionary algorithm for extractive text summarization //Intelligent Information Management, 2009, vol.1, №2, pp.128–138.
  • Radev D., Jing H., Stys M., Tam D. Centroid-based summarization of multiple documents // nformation Processing & Management, 2004, vol.40, №6, pp.919–938.
  • Rashedi E., Nezamabadi-pour H., Saryazdi S. GSA: a gravitational search algorithm, // Information Sciences, 2009, vol.179, №13, pp.2232–2248.
  • Zielinski K., Peters D., Laur R. Runtime analysis regarding stopping criteria for differential evolution and particle swarm optimization / Proceedings of the 1st International Conference on Experiments/Process/System Modelling/Simulation /Optimization, Athens, Greece, 2005, july 6–9.
  • Das S., Suganthan P.N. Differential evolution: a survey of the state-of-the-art, // IEEE Transactions on Evolutionary Computation, 2011, vol.15, №1, pp.4–31.
  • Das S., Sil S. Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm // Information Sciences, 2010, vol.180, №8, pp.1237–1256.
  • Lu Y., Zhou J., Qin H., Li Y., Zhang Y. An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects // Expert Systems with Applications, 2010, vol.37, №7, pp.4842–4849.
  • Zhang M., Luo W., Wang X. Differential evolution with dynamic stochastic selection for constrained optimization // Information Sciences, 2008, vol.178, №15, pp.3043–3074.
  • Alguliev R.M., Aliguliyev R.M., Hajirahimova M.S., Mehdiyev C.A. MCMR: maximum coverage and minimum redundant text summarization model // Expert Systems with Applications, 2011, vol.38, №12, pp.14514–14522.
  • Aliguliyev R.M. Clustering techniques and discrete particle swarm optimization algorithm for multi-document summarization // Computational Intelligence, 2010, vol.26, №4, 420–448.