AZERBAIJAN NATIONAL ACADEMY OF SCIENCES
ROLE OF TEXT MINING IN NATIONAL SECURITY (rus.)
Ramiz M. Aliguliyev

The paper provides a summary of the goals, objectives and applications of Text Mining technology. In particular, role of this technology in national security applications is analyzed and the promising research directions in this area are pointed out. (pp. 38-43)

Keywords: Text Mining, information security, national security, ECHELON
References
  • European Parliament. European Parliament report on ECHELON. http://www.fas.org/irp/program/process/ rapport_echelon_en.pdf, 2001
  • http://www.wikipedia.org/
  • Han J., Kamber M. Data mining: concepts and techniques, 2nd edition, Morgan Kaufmann Publishers, 2006.
  • Lim M. J. H. Computational intelligence in email traffic analysis. PhD Dissertation, University of Tasmania, 2008.
  • Mani, Maybury M. Advances in automatic text summarization. Cambridge: MIT Press, 1999, 442 p.
  • Abbasi, Chen H. Applying authorship analysis to extremist group web forum messages // IEEE Intelligent Systems, 2005, no.5, pp.67–75.
  • Alguliev R. M., Aliguliyev R. M., Nazirova S. A. Classification of textual e-mail spam using data mining techniques // Applied Computational Intelligence and Soft Computing, 2011, vol.2011, Article 416308, 8 p.
  • Almeida T. A., Yamakami A. Advances in spam filtering techniques // Computational Intelligence for Privacy and Security Studies in Computational Intelligence, 2012, vol. 394, pp.199–214.
  • Berry M.W., Browne M. E-mail surveillance using nonnegative matrix factorization // Computational & Mathematical Organization Theory, 2005, vol.11, no.3, pp.249–264.
  • Elovici Y., Shapira B., Last M., Kandell A., Zaafrany O. Using data mining techniques for detecting terror-related activities on the web // Journal of Information Warfare, 2004, vol.3, no.1, pp.17–28.
  • Guthrie D. Unsupervised detection of anomalous text. PhD Thesis, University of Sheffield, 2008.
  • Nizamani S., Memon N., Wiil U.K. and Karampelas P. Modeling suspicious email detection using enhanced feature selection // International Journal of Modeling and Optimization, 2012, vol.2, no.4, pp.371–377.
  • Wang G., Chen H., Atabakhsh H. Automatically detecting deceptive criminal identities // Communications of the ACM, 2004, vol.47, no.3, pp.71–76.
  • Competitive intelligence through data mining public sources // Competitive Intelligence Review, 1998, vol.9, no.1, pp.44–54.
  • Virtual weapons for real wars: text mining for national security // Proceedings of the International Workshop on Computational Intelligence in Security for Information Systems. Advances in Soft Computing, 2009, vol.53, pp.53–60.
  • Zheng R., Li J., Chen H., Huang Z. A framework of authorship identification for online messages: writing style features and classification techniques // Journal of the American Society for Information Science and Technology, 2006, vol.57, no.3, pp.378–393.