№1, 2013
ИНТЕЛЛЕКТУАЛЬНЫЕ МЕТОДЫ АНАЛИЗА НА ОСНОВЕ ПЕРСОНАЛЬНЫХ ДАННЫХ В ЭЛЕКТРОННОМ ГОСУДАРСТВЕ
Создание центрального хранилища данных государственного реестра электронного правительства в целях применения интеллектуальных методов анализа данных для поддержки принятия более обоснованных решений необходимо. Разработана концептуальная основа для таких сценариев с применением интеллектуального анализа данных. Учитывая вопросы конфиденциальности, важно поддерживать конфиденциальность сохранения интеллектуального анализа данных. Предложен общий обзор системы сохранения конфиденциальности интеллектуального анализа данных, и дан очень краткий и общий обзор методов и подходов к сохранению конфиденциальности. (стр. 24-30)
Ключевые слова: электронное правительство, интеллектуальный анализ данных, сохранение конфиденциальности, хранилище данных
Литература
- Fayyad, Usama. Piatetsky-Shapiro, Gregory; Smyth, Padhraic (1996). "From Data Mining to Knowledge Discovery in Databases".
- "Data Mining Curriculum". ACM SIGKDD. 2006-04-30.
- June 24, 2011 (2011-06-24). "Pharmaceutical industry: Supreme Court sides with pharmaceutical industry in two decisions-Los Angeles Times". Articles.latimes.com. Retrieved 2012-11-07. Text "By David G. Savage, Los Angeles Times ".
- Keim, Daniel A.; Information Visualization and Visual Data Mining.
- Government Accountability Office, Data Mining: Early Attention to Privacy in Developing a Key DHS Program Could Reduce Risks, GAO-07-293 (February 2007), Washington, DC.
- Secure Flight Program report, MSNBC.
- "Total/Terrorism Information Awareness (TIA): Is It Truly Dead?". Electronic Frontier Foundation (official website). 2003.
- National Research Council, Protecting Individual Privacy in the Struggle Against Terrorists: A Framework for Program Assessment, Washington, DC: National Academies Press, 2008.
- Think Before You Dig: Privacy Implications of Data Mining & Aggregation, NASCIO Research Brief, September 2004.
- Samarati P., Sweeney L. Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement Through Generalization and Suppression. IEEE Symp. on Security and Privacy, 1998.
- Agrawal R., Srikant R. Privacy-Preserving Data Mining. ACM SIGMOD Conference, 2000.
- Agrawal D. Aggarwal C. C. On the Design and Quantification of Privacy Preserving Data Mining Algorithms.ACM PODS Conference, 2002.
- Verykios V. S., Elmagarmid A., Bertino E., Saygin Y., Dasseni E.: Association Rule Hiding.IEEE Transactions on Knowledge and Data Engineering, 16(4), 2004.
- Blum A., Dwork C., McSherry F., Nissim K.: Practical Privacy: The SuLQ Framework. ACM PODS Conference, 2005.
- Pinkas B.: Cryptographic Techniques for Privacy-Preserving Data Mining. ACM SIGKDD Explorations, 4(2), 2002.
- Aggarwal C. C., Yu P. S. On Variable Constraints in Privacy Preserving Data Mining. ACM SIAM Data Mining Conference, 2005.
- Xiao X., Tao Y. Personalized Privacy Preservation.ACM SIGMOD Conference, 2006.
- Meyerson A., Williams R. On the complexity of optimal k-anonymity. ACM PODS Conference, 2004.