Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'n.id' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_mode=only_full_group_by
Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'n.id' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_mode=only_full_group_by МОДЕЛЬ ОПТИМАЛЬНОГО ПЛАНИРОВАНИЯ ПРОЦЕССОВ ОБРАБОТКИ ИНЦИДЕНТОВ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ (азерб.) - Problems of Information Technology, scientific -practical journal
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА
МОДЕЛЬ ОПТИМАЛЬНОГО ПЛАНИРОВАНИЯ ПРОЦЕССОВ ОБРАБОТКИ ИНЦИДЕНТОВ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ (азерб.)
Имамвердиев Ядигар Н.

Быстрая и адекватная реакция на инциденты информационной безопасности имеет решающее значение для обеспечения непрерывности бизнес-процессов. Для обработки таких инцидентов требуются специальные команды CERT, но расходы на их содержание являются бременем для большинства организаций, и они предпочитают пользоваться услугами специальных провайдеров услуг CERT. В этом исследовании предложена модель оперативного распределения операций по обработке инцидентов информационной безопасности между группами CERT; модель сформулирована как задача оптимизации, и для ее решения разработан алгоритм дифференциальной эволюции (стр.80-91).

Ключевые слова: информационная безопасность, реагирование на инциденты, управление инцидентами, CERT, CSIRT, планирование, дифференциальная эволюция.
DOI : 10.25045/jpit.v09.i2.09
Литература
  • Əliquliyev R.M., İmamverdiyev Y.N. İnformasiya təhlükəsizliyi insidentləri. Bakı: “İnformasiya Texnologiyaları” nəşriyyatı, 2015, 219 səh.
  • Cichonski P., Millar T., Grance T., and Scarfone K. Computer security incident handling guide. NIST Special Publication 800-61, 2012, 147 p.
  • West-Brown M.J., Stikvoort D., and Kossakowski K.-P. Handbook for Computer Security Incident Response Teams (CSIRTs). CMU/SEI-2003-HB-002. 2003, 223 p. 
  • Wiik J., Gonzalez J.J., Davidsen P.I., and Kossakowski K.P. Chronic workload problems in CSIRTs / Proc. of the 27th International Conference of the System Dynamics Society, 2009, pp.1–19.
  • Osorno M., Millar T., Rager D. Coordinated cybersecurity incident handling: Roles, processes, and coordination networks for crosscutting incidents / Proc. of the 16th ICCRTS “Collective C2 in Multinational Civil-Military Operations”, 2011, pp.1–12.
  • Tøndel I.A., Line M.B., Jaatun M.G. Information security incident management: Current practice as reported in the literature // Computers & Security, 2014, vol.45, pp.42–57.
  • Deshpande D. Managed security services: An emerging solution to security / Proc. 2nd Annual Conference on Information Security Curriculum Development, 2005, pp.107–111.
  • Alberts C., Dorofee A., Killcrece G., and Zajicek R. R. M. Defining incident management processes for CSIRTs: A work in progress. Carnegie Mellon Software Engineering Institute, 2004, 249 p.
  • ISO/IEC 27035:2011 Information technology – Security techniques – Information security incident management. 2011, 78 p.
  • Mitropoulos S., Patsos D., Douligeris C. On incident handling and response: A state-of-the-art approach // Computers & Security, 2006, vol.25, pp.351–370.
  • Hidayah N., Rahman A., Kim K., Choo R. A survey of information security incident handling in the cloud // Computers & Security, vol.49, 2015, pp.45–69.
  • Knowles W., Prince D., Hutchison D., Disso J. F. P., Jones K. A survey of cyber security management in industrial control systems // International Journal of Critical Infrastructure Protection, 2015, vol.9, pp.52–80.
  • Jeong K., Park J., Kim M., Noh B. A security coordination model for an inter-organizational information incidents response supporting forensic process / Fourth International Conference on Networked Computing and Advanced Information Management, 2008, vol.2, pp.143–148.
  • Atif A., Maynard S.B., and Shanks G. A case analysis of information systems and security incident responses // International Journal of Information Management, 2015, vol.35, no.6, pp.717–723.
  • Schneier B. The future of incident response // IEEE Security & Privacy, 2014, vol.12, no.5, pp.96–96.
  • Kuypers M. A., Maillart T., and Paté-Cornell E. An empirical analysis of cyber security incidents at a large organization. Working Paper. 2016, 22 p.
  • Brucker P., Drexl A., Möhring R., Neumann K., and Pesch E. Resource-constrained project scheduling: Notation, classification, models, and methods // European Journal of Operational Research, 1999, vol.112, no.1, pp.3-41.
  • Brucker P., and Knust S., Complex Scheduling. GOR-Publications, 2012, 352 p.
  • Artigues C., Demassey S., and Neron E. (Eds.) Resource-constrained project scheduling: models, algorithms, extensions and applications. John Wiley & Sons. 2008, 288 p.
  • Kolisch R., Hartmann S. Experimental investigation of heuristics for resource constrained project scheduling: an update // European Journal of Operational Research, 2006, vol.174, no.1, pp.23–37.
  • Habibi F., Barzinpour F., and Sadjadi S. Resource-constrained project scheduling problem: review of past and recent developments // Journal of Project Management, 2018, vol.3, no.2, pp.55–
  • Alcaraz J., Maroto C., and Ruiz R. Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms // Journal of the Operational Research Society, 2003, vol.54, no.6, pp.614–
  • Valls V., Ballestini F., Quintanilla S. A hybrid genetic algorithm for the resource constrained project scheduling problem // European Journal of Operational Research, 2008, vol.185, no.2, pp.495–508.
  • Gen M., Gao J., and Lin L. Multistage-based genetic algorithm for flexible job-shop scheduling problem // Intelligent and Evolutionary Systems, 2009, pp.183–196.
  • Koulinas G., Kotsikas L., and Anagnostopoulos K. A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem // Information Sciences, 2014, vol.277, pp.680–693.
  • Tang D., Dai M., Salido M. A., and Giret A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization // Computers in Industry, 2016, vol.81, pp.82–95.
  • Myszkowski P. B., Skowroński, M. E., Olech, Ł. P., and Oślizło K. Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem // Soft Computing, 2015, vol.19, no.12, pp.3599–3619.
  • Li J. Q., Pan Q. K., and Gao K. Z. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems // The International Journal of Advanced Manufacturing Technology, 2011, vol.55, no.9, pp.1159–1169.
  • Akbari R., Zeighami V., and Ziarati K. Artificial bee colony for resource constrained project scheduling problem // International Journal of Industrial Engineering Computations, 2011, vol.2, no.1, pp.45–
  • Gao K. Z., Suganthan P. N., Pan Q. K., Chua T. J., Chong C. S., and Cai T. X. An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time // Expert Systems with Applications, 2016, vol.65, pp.52–67.
  • Damak J., Jarboui B., Siarry P., Loukil T. Differential evolution for solving multi-mode resource-constrained project scheduling problems // Computers & Operations Research, 2009, vol.36, no.9, pp.2653–2659.
  • Afshar-Nadjafi, B., Karimi H., Rahimi A., and Khalili S. Project scheduling with limited resources using an efficient differential evolution algorithm // Journal of King Saud University-Engineering Sciences, 2015, vol.27, no.2, pp.176–184.
  • Storn R., Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces // Journal of Global Optimization, 1997, vol.11, no.4, pp.341–354.
  • Imamverdiyev Y.N. An information security incident prioritization method / Proc. of the 7th International Conference on Application of Information and Communication Technologies, 2013, pp.183–
  • Hsu T., Dupas R., Jolly D., & Goncalves G. Evaluation of mutation heuristics for the solving of multiobjective flexible job shop by an evolutionary algorithm / Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2002, vol.5, pp.655–660.
  • Shao X., Liu W., Liu Q., & Zhang C. Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem // The International Journal of Advanced Manufacturing Technology, 2013, vol. 67, no.9–12, pp.2885–2901.
  • Kacem I., Hammadi S., & Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems // IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2002, vol.32, no.1, pp.1–13.
  • Das S., & Suganthan P. N. Differential evolution: A survey of the state-of-the-art // IEEE Transactions on Evolutionary Computation, 2011, vol.15, no.1, pp.4–31.
  • Alguliev R. M., Aliguliyev R. M., & Hajirahimova M. S. Quadratic Boolean programming model and binary differential evolution algorithm for text summarization // Problems of Information Technology, 2012, no.2, pp.20–29.
  • Deng C., Liang C. Y., Zhao B., Yang Y., & Deng A. Y. Structure-encoding differential evolution for integer programming // Journal of Software, 2011, vol.6, no.1, pp.140–147.
  • Li H., & Zhang L. A discrete hybrid differential evolution algorithm for solving integer programming problems // Engineering Optimization, 2014, vol.46, no.9, pp.1238–1268.
  • Pan Q. K., Tasgetiren M. F., & Liang Y. C. A discrete differential evolution algorithm for the permutation flowshop scheduling problem // Computers & Industrial Engineering, 2008, vol.55, no.4, pp.795–816.
  • Pezzella F., Morganti G., Ciaschetti G. A genetic algorithm for the flexible job-shop scheduling problem // Computers & Operations Research, 2008, vol.35, no.10, pp.3202–3212.
  • Shi G. A genetic algorithm applied to a classic job-shop scheduling problem // International Journal of Systems Science, 1997, vol.28, no.1, pp.25–32.
  • Elgendy A. R., Mohammed H., & Elhakeem A. Optimizing dynamic flexible job shop scheduling problem based on genetic algorithm // International Journal of Current Engineering and Technology, 2017, vol.7, pp.368–373.