О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий

О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий

О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий

О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий

О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий
О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ - Проблемы Информационных Технологий
НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АЗЕРБАЙДЖАНА

№2, 2018

О ПЕРСПЕКТИВАХ ИНТЕЛЛЕКТУАЛЬНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ

Шыхалиев Рамиз Г.

В статье рассматриваются вопросы применения интеллектуальных технологий на нефтегазовых месторождениях для решения различных задач. К ним относятся: интеллектуализация анализа собранных с нефтегазовых месторождений больших объемов данных; интеллектуализация процесса бурения; прогноз запаса и оптимизация добычи нефти и газа; оптимизация размещения и менеджмента нефтегазовых месторождений и т.д. При этом интеллектуализация нефтегазовых месторождений невозможна без применения информационных технологий. Интеллектуализация нефтегазовых месторождений приводит к повышению эффективности дистанционного контроля и управления добычей нефти и газа, большей точности геофизических исследований, безопасности, а также сокращению структурных затрат и сохранению конкурентоспособности нефтедобывающих компаний (стр.46-54).

Ключевые слова: нефтегазовые месторождения, искусственный интеллект, интеллектуальные технологии, информационные технологии, разведка и эксплуатация нефтегазовых месторождений, прогноз запаса и оптимизация добычи нефти и газа, интеллектуализация процесса бурения.
DOI : 10.25045/jpit.v09.i2.05
Литература
  • Anthony E. P., et al., Value Generated Through Automated Workflows Using Digital Oilfield Concepts - Case Study / SPE Kuwait Oil and Gas Show and Conference, SPE-167327-MS. 2013.
  • Кочнев А.А. Концепция «интеллектуального» месторождения // Master`s Journal, 2015, №2, c.165–171.
  • https://rogtecmagazine.com/wp-content/uploads/2014/10/083.pdf
  • Zhu Z.-P., Pan R.-F., Chen Z., Li G.-Q., Zheng G.-S., Analysis on cloud data service platform for digital oilfields // Journal of Digital Information Management, 2016, vol.14, no.6, pp.413–422.
  • Alıquliyev R.M., İmamverdiyev Y.N., Abdullayeva F.C., Neft-qaz sənayesi üçün Big Data analitikanın Cloud Computing platformasında Analytics-As-A-Service kimi reallaşdırılma imkanlarının tədqiqi // İnformasiya texnologiyaları problemləri, 2016, №1, s.11–26.
  • marketsandmarkets.com/PressReleases/digital-oilfield.asp
  • Aminzadeh F., Applications of AI and soft computing for challenging problems in the oil industry // Journal of Petroleum Science and Engineering, 2005, 47, pp.5–14.
  • Making the Intelligent Oil Field a Reality: www-03.ibm.com/industries/ca/en/portal/files/making_the_intelligent_oilfield_reality.pdf
  • The intelligent oilfield: meeting the challenges of today’s oil and gas exploration and production industry: www-935.ibm.com/ services/us/imc/pdf/ge510-3882-oil-gas-challenges.pdf
  • Cyber security vulnerabilities for the oil and gas industry:
  • www.dnvgl.com/oilgas/download/lysne-committee-study.html
  • The active cyber defense cycle: A strategy to ensure oil and gas infrastructure cyber security: www.plantengineering.com/single-article/the-active-cyber-defense-cycle-a-strategy-to-ensure-oil-and-gas-infrastructure-cyber-security/8d7b2eaedb5c1875131c5e8a0e5efbad.html
  • Bello O., Holzmann J., Yaqoob T., Teodoriu C., Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art // Journal of Artificial Intelligence and Soft Computing Research, 2015, vol.5, no.2, pp.121–139.
  • Elkatatny S., Application of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline Log Data // Journal of Energy Resources Technology, 2018, vol.140, no.7, pp.
  • Srivastava A., Artificial Intelligence: The Future Of Oil And Gas, http://www.digitalistmag.com/digital-supply-networks/2017/08/07/artificial-intelligence-future-of-oil-gas-05259467
  • Handhel A. M., Prediction of reservoir permeability from wire logs data using artificial neural networks // Iraqi Journal of Science, 2009, vol.50, no.1, pp.67–74.
  • Romero-Salcedo M., Ramirez-Sabag J., Lopez H., Hernandez D.A., Ramirez R., Analysis of prediction of pressure data in oil wells using artificial neural networks / Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2010, pp.51–55.
  • Mohseni H., Esfandyari M., Asl E. H., Application of artificial neural networks for prediction of Sarvak Formation lithofacies based on well log data, Marun oil field, SW Iran // Geopersia, 2015, vol. 5, no.2, pp.111–123.
  • Ghazwan J., Application of neural network to optimize oil field production // Asian Transactions on Engineering, 2012, vol.2, no.3, pp.10–23.
  • Bello O., Teodoriu C., Yaqoob T. Obinwanne A., et al., Application of Artificial Intelligence Techniques in Drilling System Design and Operations: A State of the Art Review and Future Research Pathways // SPE Nigeria Annual International Conference and Exhibition, 2016.
  • Kadkhodaie Ilkhchi A., A fuzzy logic approach to estimating hydraulic flow units from well log data: a case study from the ahwaz oilfield, south Iran // Journal of Petroleum Geology, 2009, vol.32, no.1, pp.67–78.
  • Atiaa A. M., Handhel A. M., A fuzzy logic approach to infer reservoir permeability from depth and porosity measurements for Mishrif limestone Formation at Nasyria Oil Field, south of Iraq // Journal of Al-Anbar university for pure science, 2009, vol.3, no.1, pp.98-106.
  • Widarsono B., Atmoko H., et al., Application of Fuzzy Logic for Determining Production Allocation in Commingle Production Wells // SPE Asia Pacific Oil and Gas Conference and Exhibition, 2005.
  • Odedele T. O., Ibrahim H. D., Oil well performance diagnosis system using fuzzy logic inference models / Proceedings of the World Congress on Engineering, 2014, vol.1, 
    80–85.
  • Bermudez F., Carvajal G.A., Moricca G., Dhar J., Adam F. M., Al-Jasmi A., H.K. Goel H. Nasr, A Fuzzy Logic Application to Monitor and Predict Unexpected Behavior in Electric Submersible Pumps (Part of KwIDF Project), / SPE Intelligent Energy Conference & Exhibition, 2014, pages 13.
  • Jain R., Expert Systems: A Management Perspective / Vikalpa, 1989, vol.14, no.4, pp.17–28.
  • Zhong Y., Zhu M., Zhang Z., An Intelligent Prediction Model for Oilfield Production Based on Fuzzy Expert System // Fuzzy Engineering and Operations Research, 2012, pp.475–484.
  • Nanjun L., Wan D., Jie W., Xia X., Junhui L., Application of Rule Based Expert System to Sand Control in Oil Fields / Fifth International Conference on Intelligent Computation Technology and Automation, 2012, pp.110–113.
  • Ghallab S. A., Badr N., Hashem M., Salem A. B. and Tolba M. F., A Fuzzy Expert System For Petroleum Prediction / Recent Advances in Computer Science, 2013, pp.70–75.
  • allerin.com/blog/how-machine-learning-is-revolutionizing-the-oil-and-gas-industry
  • Oliveira V. L. C., et al., A multi-agent system for oil field management / 11th IFAC Workshop on Intelligent Manufacturing Systems The International Federation of Automatic Control, 2013, pp.35–40.
  • Matei N. M., Dobrescu S.-L., Ichim L., Popescu D., Pricop E., A Multi-Agent System for Management of Control Functions as Services in Onshore Oilfield / 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2017.
  • Montes G., et al., The Use of Genetic Algorithms in Well Placement Optimization / SPE Latin American and Caribbean Petroleum Engineering Conference, 2001.
  • Lazo Lazo J., Pacheco M., Vellasco M., Dias M., Real Option Decision Rules For Oil Field Development Under Market Uncertainty Using Genetic Algorithms And Monte Carlo Simulation / 7th Annual Real Options International Conference, 2003.
  • Lazo Lazo J., et al., Real Options and Genetic Algorithms to Approach of the Optimal Decision Rule for Oil Field Development Under Uncertainties // Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, 2007, pp.445–454.
  • Ariadji T., Sukarno P., et al., Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using a Genetic Algorithm // Journal of Engineering and Technological Sciences, 2012, vol.44, no.2, pp.106–127.
  • Abou-Sayed A., Data Mining Applications in the Oil and Gas Industry // Journal of Petroleum Technology, 2015, vol.64, no.10, pp.88–95.
  • Aulia A., Keat T. B., et al., Smart Oilfield Data Mining for Reservoir Analysis // International Journal of Engineering & Technology IJET-IJENS, 2010, vol.10, no.06, pp.78–88.
  • Kravis S., Irrgang R., A Case Based System for Oil and Gas Well Design with Risk Assessment // Applied Intelligence, 2005, vol.23, no.1, pp.39–53.
  • Jafar A., Analysing Complex Oil Well Problems through Case-Based Reasoning, Doctoral thesis, 2007.
  • Chang L., Yan T., et al., The Application of Based on Case-Based Reasoning for Drilling Parameter Optimization in HaiTa Oilfield // Advanced Materials Research, 2014, vol.936, pp.1560–1564.
  • Alıquliyev R. M., İmamverdiyev Y. N. Neft-qaz sənayesi üçün konseptual Big Data arxitekturası // İnformasiya texnologiyaları problemləri, 2017, №1, s.3–14.
  • Alıquliyev R. M., İmamverdiyev Y. N. Neft-qaz sənayesi üçün Big Data strategiyası: Ümumi istiqamətlər // İnformasiya texnologiyaları problemləri, 2017, №2, s.34–47.
  • Hacırəhimova M.Ş. “Big Data” neft-qaz sənayesində qərar qəbul etmənin əsas komponenti kimi / “Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı, Bakı, 2016, s.162–165.
  • Xiong C., Zhang X., Zhao R. et al., Internet of Things Remote Intelligent Monitor System of Oil & Gas Field / 2nd International Conference on Manufacturing Science and Information Engineering, 2017, pp.52–56.
  • Еремин Н.А., Дмитриевский А.Н., Тихомиров Л.И. Настоящее и будущее интеллектуальных месторождений // Нефть. Газ. Новации, 2015, №12, с. 44–49.