№2, 2024

A CLOUD COMPUTING PARADIGM IN ROBOT MOTION PLANNING: INNOVATIONS AND PROSPECTS

Yusif Mardanzade

The paper presents a new approach to the simulation of robot motion planning using cloud computing technologies. Robot motion planning plays a crucial role in robotics and enables robots to efficiently control and perform tasks in various environments. Using cloud computing, the proposed simulation framework offers significant advantages in terms of scalability, resource utilization, and availability. The paper begins with an overview of the potential applications of cloud computing in robot motion planning and simulation tasks. It then presents the architecture and components of a cloud-based simulation framework, highlighting its advantages over traditional methods. Overall, this paper provides valuable insights into the integration of cloud technologies into robotics, paving the way for more efficient and scalable simulation solutions (pp.41-51).

Keywords: Robotics, Integration, Cloud-based simulation, Robot movement, Technology
References

Bae, H., Kim, G., Kim, J., Qian, D., & Lee, S. (2019). Multi-robot path planning method using reinforcement learning. Applied Science, 9(15), 3057. https://doi.org/10.3390/app9153057

Bogue, R. (2017). Cloud robotics: a review of technologies, developments and applications, Industrial Robot, 44(1), 1-5.
https://doi.org/10.1108/IR-10-2016-0265

Bellemare, M. G., Dabney, W., & Rémi, M. (2017). A distributional per- spective on reinforcement learning. arXiv preprint arXiv:1707.06887.

Bennewitz, M., Burgard, W., & Thrun, S. (2001). Optimizing Schedules for Prioritized Path Planning of Multi-Robot Systems. In IEEE International Conference on Robotics and Automation, Seoul, South Korea (pp. 271-276). 
https://doi.org/10.1109/ROBOT.2001.932565

Berenson, D., Abbeel, P., & Goldberg, K. (2012). A Robot Path Planning Framework that Learns from Experience. In IEEE Inter-national Conference on Robotics and Automation, Saint Paul, MN, USA (pp. 3671-3678). 
https://doi.org/10.1109/ICRA.2012.6224742

Goldberg, K., & Kehoe, B. (2013). Cloud Robotics and Automation: A Survey of Related Work. Technical Report. UC Berkeley.

Hu, G., Tay, W. P., & Wen, Y. (2012). Cloud robotics: architecture, challenges and applications. IEEE Network, 26(3), 21-28. https://doi.org/10.1109/MNET.2012.6201212

Kamei, K., Nishio, S., Hagita, N., & Sato, M. (2012). Cloud networked robotics. IEEE Network, 26(3), 28-34.
https://doi.org/10.1109/MNET.2012.6201213

Kehoe, B., Patil, S., Abbeel, P., & Goldberg, K. (2015). A Survey of Research on Cloud Robotics and Automation. IEEE Transactions on Automation Science and Engineering, 12(2), 398-409. https://doi.org/10.1109/TASE.2014.2376492

Kulhanek, J., Derner, E., de Bruin, T., & Babuška, R. Vision-based Navigation Using Deep Reinforcement Learning. In IEEE 2019 European Conference on Mobile Robots, Prague, Czech Republic (pp. 1-8). https://doi.org/10.1109/ECMR.2019.8870964

Kousi, N., Dimosthenopoulos, D., Matthaiakis, A., Michalos, G., & Makris, S. (2018). AI based combined scheduling and motion planning in flexible robotic assembly lines. Procedia CIRP, 86, 74-79. https://doi.org/10.1016/j.procir.2020.01.041

Liu, S., Wang, S., & Zhang, D. (2020). Cloud-assisted robot navigation: A review of cloud computing applications in robotics. Robotics and Computer-Integrated Manufacturing, 64, 101924. https://doi.org/10.1016/j.compeleceng.2017.05.025

Mohanarajah, G., Hunziker, D., D'Andrea, R., & Waibel, M. (2015). Rapyuta: A Cloud Robotics Platform. IEEE Transactions on Automation Science and Engineering, 12(2), 481-493.
https://doi.org/10.1109/TASE.2014.2329556

Messinis, S., & Vosniakos, G. C. (2020). An Agent-Based Flexible Manufacturing System Controller with Pe- tri-Net En-abled Algebraic Deadlock Avoidance. Reports in Mechanical Engineering, 1(1), 77-92. 
https://doi.org/10.31181/rme200101077

Paxton, C., Raman, V., Hager, G. D., & Kobilarov, M. (2017). Combining neural networks and tree search for task and motion planning in challenging environments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada (pp. 6059–6066). https://doi.org/10.1109/IROS.2017.8206505

Qureshi, A. H., Simeonov, A., Bency, M. J., Yip, M. C. (2018). Motion planning networks. arXiv preprint arXiv:1806.05767.

Wang, F., Qian, Z., Yan, Z., Yuan, C., & Zhang, W. (2020). A novel resilient robot: Kinematic analysis and experimentation. IEEE Access, 8, 2885–2892. https://doi.org/10.1109/ACCESS.2019.2962058

Wang, Z., Freitas, N., Lanctot, M. (2015). Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581.

Zagradjanin, N., Pamucar, D., Jovanovic, K. Cloud- Based Multi-Robot Path Planning in Complex and Crowded Envi-ronment with Multi-criteria Decision Making Using Full Con-sistency Method. Symmetry, 2019, 11(10), 1-15.
https://doi.org/10.3390/sym11101241

Zhang, W. J., Wang, J. W., & Lin, Y. (2019). Integrated design and operation management for enterprise systems. Enterprise Information Systems, 13(4), 424–429.
https://doi.org/10.1080/17517575.2019.1597169

Zong, C., Ji, Z., Yu, Y., & Shi, H. (2020). Research on Obstacle Avoidance Method for Mobile Robot Based on Multisensor Information Fusion. Sensors & Materials, 32(4), 1159-1170. https://doi.org/10.18494/SAM.2020.2540