№1, 2019


Gulara A. Mammadova, Firudin T. Aghayev, Lala A. Zeynalova

Currently, modern social technologies used by hundreds of millions of users are attractive and interesting and available free of charge. The article discusses the possibility of using social networks to improve e-education at higher education institutions. Considering a large amount of information disseminated by university students in the social network, the article proposes the use of data clustering methods - k-means to personalize the content of educational materials. The results of the research can be used by teachers and instructors of higher educational institutions to improve the content of e-course and to personalize e-education (pp.27-34).

Keywords: social network, e-education, personalized learning content, clustering methods.
  • Стародубцев В.А. Персонализация виртуальной образовательной среды // Педагогическое Образование в России, 2015, №7, с.24–29.
  • Harmelen M. Personal Learning Environments / Proceedings of the Sixth IEEE International Conference on Advanced Learning Technologies, USA, pp.815–816.
  • Bennett S., Bishop A., Dalgarno B., Waycott J., Kennedy G. Implementing Web 2.0 technologies in higher education: A collective case study // Computers & Education, 2012, рр.724–729.
  • Pursel B.K., Xie H. Patterns and Pedagogy: Exploring Student Blog Use in Higher Education // Contemporary Educational Technology, 2014, 5(2), pp.96–109.
  • Schroeder A., Minocha S., Schneider C. The strengths, weaknesses, opportunities and threats of using social software in higher and further education teaching and learning // Journal of Computer Assisted Learning, 2010, pp.159–174.
  • Hosny M. I., Fatima Sh. Facebok in Education: Students, Teachers, and Library Perspectives // journal of Computing, vol.4, №6, 2012, pp.78–86.
  • McLoughlin C., Lee M. Personalised and self-regulated learning in the Web 2.0 era: International exemplars of innovative pedagogy using social software // Australasian Journal of Educational Technology 26(1), March 2010, pp.28–43.
  • Allen M. An Education in Facebook // Digital Culture and Education, 4(3), 2012, pp.213–225.
  • Pursel K., Hui Xie. Patterns and Pedagogy: Exploring Student Blog Use in Higher Education // Contemporary educational technology, 2014, 5(2), pp.96–109.
  • Ribeiro F.M.S. Contributions of Online Social Networks for E-Learning (Dissertation), Department of Informatics University of Beira Interior, Portugal, 2010, p.70 (On-line). https://ubibliorum.ubi.pt/bitstream/10400.6/3715/1/Contributions of Online Social Networks for E-Learning.pdf
  • Носов В.И. Элементы теории графов, Новосибирск: СГУТИ, 2008, c.107.
  • Charu C. Aggarwal Social Network Data Analytics. Boston: Kluwer Academic Publisher, 2011. 520 p.
  • Батура Т.В. Методы анализа компьютерных социальных сетей // Вестник Новосибирского государственного университета. Серия: Информационные технологии. 2012, т.10, вып.4, с.13–28.
  • Russell M.A. Mining the Social Web, O’Reilly Media, 2011, p.411.
  • Bonatoa A. & Hadib N. & Hornc P. & Prałatd P. & Wange C. Models of Online Social Networks // Internet Mathematics, 6(3), 2009, pp.285–313.
  • Медведев Г.А. Теория вероятностейи математическая статистика для экономистов; учебник и практикум для бакалавриата и магистратуры, М.: Издательство Юрапт, 2016, c. 284. 
  • Mishra N., Schreiber R., Stanton I. and Robert E. Tarjan. Finding Strongly Knit Clusters in Social Networks // Internet Mathematics, 5(1–2), 2008, pp.155–174.