№1, 2023


Orkhan V. Valikhanli

Unmanned Aerial Vehicles (UAVs) have many advantages compared to other vehicle systems. UAVs are faster, cheaper, and more flexible. However, like many other systems UAVs also need navigation. But, it’s not safe to use only one navigation system for various reasons. The recent increase in the number of cyberattacks is one of these reasons. Failure of the navigation system can cause the UAV to lose control. This, in turn, can lead to serious accidents. Therefore, this work analyzes various techniques to ensure the autonomous navigation of UAVs. Also, the advantages and disadvantages of each technique are discussed. Finally, the implementation of these techniques with Kalman filters (KF), deep learning, and machine learning is demonstrated and the results of various studies on this subject are also highlighted (pp.8-14).

Keywords: UAV, sensors, sensor fusion, kalman filters, cyberattacks
DOI : 10.25045/jpit.v14.i1.02

Abdullayeva, F., & Valikhanli, O. (2022). Development of a method for detecting GPS spoofing attacks on unmanned aerial vehicles. Problems Of Information Technology, 13(1), 3-8. https://doi.org/10.25045/jpit.v13.i1.01

Chambers, A., Scherer, S., Yoder, L., Jain, S., Nuske, S., & Singh, S. (2014). Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied environments. 2014 American Control Conference, Portland, OR, USA, July 2014 (pp. 1892-1899). https://doi.org/10.1109/acc.2014.6859341

Christian, J.A. and Cryan, S. (2013) “A survey of LIDAR technology and its use in spacecraft relative navigation,” AIAA Guidance, Navigation, and Control (GNC) Conference [Preprint]. Available at: https://doi.org/10.2514/6.2013-4641

Dai, X., Mao, Y., Huang, T., Li, B., & Huang, D. (2019). Navigation of simultaneous localization and mapping by fusing RGB-D camera and IMU on UAV. 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Xiamen, China, July 2019 (pp.6-11). https://doi.org/10.1109/SAFEPROCESS45799.2019.9213339

Driessen, S. P. H., Janssen, N. H. J., Wang, L., Palmer, J. L., & Nijmeijer, H. (2018). Experimentally validated extended Kalman filter for UAV state estimation using low-cost sensors. IFAC-PapersOnLine, 51(15), 43–48. https://doi.org/10.1016/j.ifacol.2018.09.088

Gao, X., & Zhang, T. (2021). Introduction to visual SLAM: From theory to practice (1st ed.). Springer Singapore. https://doi.org/10.1007/978-981-16-4939-4

Guizilini, V., & Ramos, F. (2011). Visual odometry learning for unmanned aerial vehicles. 2011 IEEE International Conference On Robotics And Automation, Shanghai, China, May 2011 (pp. 6213-6220). https://doi.org/10.1109/icra.2011.5979706

Hodge, V. J., Hawkins, R., & Alexander, R. (2020). Deep reinforcement learning for drone navigation using Sensor Data. Neural Computing and Applications, 33(6), 2015–2033. https://doi.org/10.1007/s00521-020-05097-x

Kim, Y., & Bang, H. (2019). Introduction to Kalman Filter and Its Applications. In Govaers, F. (Ed.) Introduction And Implementations Of The Kalman Filter. IntechOpen. https://doi.org/10.5772/intechopen.80600

Krishna, C. G. L., & Murphy, R. R. (2017). A review on cybersecurity vulnerabilities for unmanned aerial vehicles. 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, October 2017 (pp. 194-199). https://doi.org/10.1109/SSRR.2017.8088163

Krombach, N., Droeschel, D., & Behnke, S. (2017). Combining Feature-Based and Direct Methods for Semi-dense Real-Time Stereo Visual Odometry. 14th International Conference on Intelligent Autonomous Systems (IAS), Shanghai, China, July 2016 (pp. 855-868).https://doi.org/10.1007/978-3-319-48036-7_62

Liaq, M., & Byun, Y. (2019). Autonomous UAV navigation using reinforcement learning. International Journal of Machine Learning and Computing, 9(6), 756–761. https://doi.org/10.18178/ijmlc.2019.9.6.869

Liu, L., Wu, Y., Fu, G., & Zhou, C. (2022). An improved four-rotor UAV autonomous navigation multisensor fusion depth learning. Wireless Communications and Mobile Computing, 2022, 1–8. https://doi.org/10.1155/2022/2701359

Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, November 2013 (pp. 1-8). https://doi.org/10.1109/IROS.2013.6696917

Manesh, M., Kenney, J., Hu, W., Devabhaktuni, V., & Kaabouch, N. (2019). Detection of GPS Spoofing Attacks on Unmanned Aerial Systems. 2019 16Th IEEE Annual Consumer Communications &Amp; Networking Conference (CCNC), Las Vegas, NV, USA, January 2019 (pp. 1-6). https://doi.org/10.1109/ccnc.2019.8651804

Mehendale, N. & Neoge, S. (2020) “Review on lidar technology,” SSRN Electronic Journal [Preprint]. Available at: https://doi.org/10.2139/ssrn.3604309.

Psiaki, M., & Humphreys, T. (2016). GNSS Spoofing and Detection. Proceedings Of The IEEE, 104(6), 1258-1270. https://doi.org/10.1109/jproc.2016.2526658

Roriz, R., Cabral, J. and Gomes, T. (2022) “Automotive Lidar Technology: A survey,” IEEE Transactions on Intelligent Transportation Systems, 23(7), pp. 6282–6297. Available at: https://doi.org/10.1109/tits.2021.3086804

Scaramuzza, D., & Fraundorfer, F. (2011). Visual Odometry [Tutorial]. IEEE Robotics &Amp; Automation Magazine, 18(4), 80-92. https://doi.org/10.1109/mra.2011.943233

Shafiee, E., Mosavi, M., & Moazedi, M. (2017). Detection of Spoofing Attack using Machine Learning based on Multi-Layer Neural Network in Single-Frequency GPS Receivers. Journal Of Navigation, 71(1), 169-188. https://doi.org/10.1017/s0373463317000558

Xu, H., Li, P., Wen, L., & Wang, Z. (2021). Vision / inertial integrated navigation method for quadcopter based on EKF state observer. Journal of Physics. Conference Series, Shenyang, China, 2021 (pp. 1-6) https://doi.org/10.1088/1742-6596/1748/6/062076

Yousif, K., Bab-Hadiashar, A., & Hoseinnezhad, R. (2015). An overview to visual odometry and visual SLAM: Applications to mobile robotics. Intelligent Industrial Systems, 1(4), 289–311. https://doi.org/10.1007/s40903-015-0032-7