AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri

AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri

AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri

AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri

AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri
AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ - İnformasiya Texnologiyaları Problemləri
AZƏRBAYCAN MİLLİ ELMLƏR AKADEMİYASI

№1, 2021

AZƏRBAYCANDA COVID-19 KORONAVİRUSUNA YOLUXMANIN PROQNOZLAŞDIRILMASI ÜÇÜN ARIMA MODELLƏRİNİN TƏTBİQİ

Sadıyeva Firəngiz İ.

Məqalədə COVID-19 pandemiyasını proqnozlaşdırmaq üçün avtoreqressiv inteqrasiya edilmiş hərəkətli ortalama (ing. ARIMA. Autoregressive İntegrated Moving Average) modeli təklif edilmişdir. COVID-19 dünyada sürətlə yayılan və hazırda davam edən yeni növ pandemiyadır. Son dövrlərdə pandemiyaya yoluxanların sayı Azərbaycanda rekord həddə çatmışdır. Məhz bu səbəbdən COVID-19 pandemiyasının proqnozu məsələsinə baxılmışdır və bir neçə ayı əhatə edən real verilənlərlə eksperimentlərdə təklif edilmiş ARIMA modelinin COVID-19 zaman sıralarının proqnozlaşdırılması üçün müxtəlif parametrlərlə tətbiq edilmişdir. Verilənlər dedikdə, 22.01.2020 – 22.10.2020 tarixləri arasında Azərbaycan Respublikasının Səhiyyə Nazirliyi (www.sehiyye.gov.az) tərəfindən rəsmi olaraq qeydiyyata alınan gündəlik yoluxma hallarının sayı nəzərdə tutulur. Bu verilənlərdən istifadə etməklə, növbəti zaman aralığında ölkəmizdə baş verəcək yoluxma halları proqnoz edilmişdir. Bunun üçün ARIMA modelinə müxtəlif parametrlər verilmiş və uyğun olaraq hər bir modelin səhv dərəcəsi qiymətləndirilmişdir. Səhvin qiymətləndirilməsi üçün MAPE (Mean Absolute Persentace Error), MAE (Mean Absolute Error) və RMSE (Root Mean Square Error) funksiyaları istifadə edilib. Müqayisələr nəticəsində ən uyğun model seçilmişdir. Alınmış nəticələr ölkəmizdə pandemiya dövründə həm səhiyyə sistemi, həm də adi vətəndaşlar üçün vacib amildir. Əldə edilmiş nəticələr statistik metodların koronavirusa aid qeyri-stasionar zaman sıralarının proqnozlaşdırılmasının digər məsələlərə tətbiqində də məhsuldar ola biləcəyini təsdiqləyir (səh.95–104).

Açar sözlər: COVID-19, koronavirus, ARIMA, proqnozlaşdırma, zaman sıraları.
DOI : 10.25045/jpit.v12.i1.08
Ədəbiyyat
  • The World Health Organization (WHO). Coronavirus disease (COVID-2019) situation reports. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
  • Chakraborty T., and Ghosh I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis // Chaos, Solitons & Fractals, 2020, vol.135, 109850. DOI: 10.1016/j.chaos.2020.109850.
  • Tyrrell D. A., and Bynoe M. L. Cultivation of viruses from a high proportion of patients with colds // Lancet, 1966, vol. 1 (7428), pp.76–77.
  • Velavan T.P., and Meyer C.G. The COVID-19 epidemic // Tropical medicine & international health, 2020, vol.25(3), pp.278–280.
  • Rustam F., Reshi A. A., Mehmood A., Ullah S., On B., Aslam W., and Choi G. S. COVID-19 future forecasting using supervised machine learning models // IEEE Access, 2020, vol.8, pp.101489–101499. DOI: 10.1109/ACCESS.2020.2997311.
  • Petropoulos F., and Makridakis S. Forecasting the novel coronavirus COVID-19 // PloS one, 2020, 15(3), e0231236. DOI: 10.1371/journal.pone.0231236.
  • Roosa K., Lee Y., Luo R., Kirpich A., Rothenberg R., Hyman J.M., and Chowell G. Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020 // Journal of Clinical Medicine, 2020, 9(2), 596. DOI: 10.3390/jcm9020596.
  • Hu Z., Ge Q., Jin L., and Xiong M. Artificial intelligence forecasting of COVID-19 in China. arXiv preprint arXiv:2002.07112, 2020, 20 p.
  • Liu D., Clemente L., Poirier C., Ding X., Chinazzi M., Davis J. T., Vespignani A., and Santillana M. A machine learning methodology for real-time forecasting of the 2019-2020 COVID-19 outbreak using Internet searches, news alerts, and estimates from mechanistic models. arXiv preprint arXiv:2004.04019, 2020, 23 p.
  • Chimmula V.K.R., and Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks // Chaos, Solitons & Fractals, 2020, vol.135, 109864. DOI: 10.1016/j.chaos.2020.109864.
  • Azarafza M., Azarafza M., and Tanha J. COVID-19 Infection Forecasting based on deep learning in Iran. medRxiv. 2020, 7 p.
  • Punn N. S., Sonbhadra S. K., and Agarwal S. COVID-19 epidemic analysis using Machine Learning and DeepLearning algorithms. medRxiv. 2020, 10 p.
  • Bandyopadhyay S. K., and Dutta S. Machine learning approach for confirmation of COVID-19 cases: Positive, negative, death and release. medRxiv, 2020, 10 p.
  • Pathan R.K., Biswas M., and Khandaker M.U. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model // Chaos, Solitons & Fractals, 2020, vol. 138, 110018. DOI: 10.1016/j.chaos.2020.110018.
  • Benvenuto D., Giovanetti M., Vassallo L., Angeletti S., and Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset // Data in brief, 2020, vol.29, 105340. DOI: 10.1016/j.dib.2020.105340.
  • Perone G. An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy. medRxiv. 2020, 14 p.
  • Vandeput N. Forecast KPI: RMSE, MAE, MAPE and Bias. Data Science for Supply Chain Forecast, 2019, 237 p.
  • Medium, https://medium.com/@kangeugine/time-series-arima-model-11140bc08c6
  • Liu Q., Liu X., Jiang B., and Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model // BMC Infectious Diseases, 2011, vol.11 (1), 7 p. DOI: 10.1186/1471-2334-11-218.
  • GitHub, https://github.com/owid/covid-19-data/tree/master/public/data
  • Kaggle, https://www.kaggle.com/datasets
  • Shahid F., Zameer A., and Muneeb M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM // Chaos, Solitons & Fractals, 2019, vol. 140, Article 110212. DOI: 10.1016/j.chaos.2020.110212.
  • Wikipedia, https://en.wikipedia.org/wiki/Akaike_information_criterion